mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* refactor actions and events * remove type_key * remove stream * move import * move import * fix NullObs * reorder imports * fix lint * fix dataclasses * remove blank fields * fix nullobs * fix sidebar labels * fix test compilation * switch to asdict * lint * fix whitespace * fix executable * delint * fix run * remove NotImplementeds * fix path prefix * remove null files * add debug * add more debug info * fix dataclass on null * remove debug * revert sandbox * fix merge issues * fix tyeps * Update opendevin/events/action/browse.py
181 lines
7.0 KiB
Python
181 lines
7.0 KiB
Python
import re
|
|
from typing import List, Mapping
|
|
|
|
from agenthub.codeact_agent.prompt import EXAMPLES, SYSTEM_MESSAGE
|
|
from opendevin.agent import Agent
|
|
from opendevin.events.action import (
|
|
Action,
|
|
AgentEchoAction,
|
|
AgentFinishAction,
|
|
AgentTalkAction,
|
|
CmdRunAction,
|
|
IPythonRunCellAction,
|
|
NullAction,
|
|
)
|
|
from opendevin.events.observation import (
|
|
AgentMessageObservation,
|
|
CmdOutputObservation,
|
|
IPythonRunCellObservation,
|
|
UserMessageObservation,
|
|
)
|
|
from opendevin.llm.llm import LLM
|
|
from opendevin.sandbox.plugins import (
|
|
JupyterRequirement,
|
|
PluginRequirement,
|
|
SWEAgentCommandsRequirement,
|
|
)
|
|
from opendevin.state import State
|
|
|
|
|
|
def parse_response(response) -> str:
|
|
action = response.choices[0].message.content
|
|
for lang in ['bash', 'ipython']:
|
|
if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
|
|
action += f'</execute_{lang}>'
|
|
return action
|
|
|
|
def truncate_observation(observation: str, max_chars: int=5000) -> str:
|
|
"""
|
|
Truncate the middle of the observation if it is too long.
|
|
"""
|
|
if len(observation) <= max_chars:
|
|
return observation
|
|
half = max_chars // 2
|
|
return observation[:half] + '\n[... Observation truncated due to length ...]\n' + observation[-half:]
|
|
|
|
class CodeActAgent(Agent):
|
|
"""
|
|
The Code Act Agent is a minimalist agent.
|
|
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
|
|
"""
|
|
|
|
sandbox_plugins: List[PluginRequirement] = [JupyterRequirement(), SWEAgentCommandsRequirement()]
|
|
SUPPORTED_ACTIONS = (
|
|
CmdRunAction,
|
|
IPythonRunCellAction,
|
|
AgentEchoAction,
|
|
AgentTalkAction,
|
|
NullAction
|
|
)
|
|
SUPPORTED_OBSERVATIONS = (
|
|
AgentMessageObservation,
|
|
UserMessageObservation,
|
|
CmdOutputObservation,
|
|
IPythonRunCellObservation
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
) -> None:
|
|
"""
|
|
Initializes a new instance of the CodeActAgent class.
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm)
|
|
self.messages: List[Mapping[str, str]] = []
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""
|
|
Performs one step using the Code Act Agent.
|
|
This includes gathering info on previous steps and prompting the model to make a command to execute.
|
|
|
|
Parameters:
|
|
- state (State): used to get updated info and background commands
|
|
|
|
Returns:
|
|
- CmdRunAction(command) - command action to run
|
|
- AgentEchoAction(content=INVALID_INPUT_MESSAGE) - invalid command output
|
|
|
|
Raises:
|
|
- NotImplementedError - for actions other than CmdOutputObservation or AgentMessageObservation
|
|
"""
|
|
|
|
if len(self.messages) == 0:
|
|
assert state.plan.main_goal, 'Expecting instruction to be set'
|
|
self.messages = [
|
|
{'role': 'system', 'content': SYSTEM_MESSAGE},
|
|
{
|
|
'role': 'user',
|
|
'content': (
|
|
f'Here is an example of how you can interact with the environment for task solving:\n{EXAMPLES}\n\n'
|
|
f"NOW, LET'S START!\n\n{state.plan.main_goal}"
|
|
)
|
|
},
|
|
]
|
|
updated_info = state.updated_info
|
|
if updated_info:
|
|
for prev_action, obs in updated_info:
|
|
assert isinstance(
|
|
prev_action, self.SUPPORTED_ACTIONS
|
|
), f'{prev_action.__class__} is not supported (supported: {self.SUPPORTED_ACTIONS})'
|
|
# prev_action is already added to self.messages when returned
|
|
|
|
# handle observations
|
|
assert isinstance(
|
|
obs, self.SUPPORTED_OBSERVATIONS
|
|
), f'{obs.__class__} is not supported (supported: {self.SUPPORTED_OBSERVATIONS})'
|
|
if isinstance(obs, (AgentMessageObservation, UserMessageObservation)):
|
|
self.messages.append(
|
|
{'role': 'user', 'content': obs.content})
|
|
|
|
# User wants to exit
|
|
if obs.content.strip() == '/exit':
|
|
return AgentFinishAction()
|
|
elif isinstance(obs, CmdOutputObservation):
|
|
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
|
|
content += f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
|
|
self.messages.append({'role': 'user', 'content': content})
|
|
|
|
elif isinstance(obs, IPythonRunCellObservation):
|
|
content = 'OBSERVATION:\n' + obs.content
|
|
# replace base64 images with a placeholder
|
|
splited = content.split('\n')
|
|
for i, line in enumerate(splited):
|
|
if ' already displayed to user'
|
|
content = '\n'.join(splited)
|
|
content = truncate_observation(content)
|
|
self.messages.append({'role': 'user', 'content': content})
|
|
else:
|
|
raise NotImplementedError(
|
|
f'Unknown observation type: {obs.__class__}'
|
|
)
|
|
|
|
response = self.llm.completion(
|
|
messages=self.messages,
|
|
stop=[
|
|
'</execute_ipython>',
|
|
'</execute_bash>',
|
|
],
|
|
temperature=0.0
|
|
)
|
|
action_str: str = parse_response(response)
|
|
state.num_of_chars += sum(
|
|
len(message['content']) for message in self.messages
|
|
) + len(action_str)
|
|
self.messages.append({'role': 'assistant', 'content': action_str})
|
|
|
|
if bash_command := re.search(r'<execute_bash>(.*)</execute_bash>', action_str, re.DOTALL):
|
|
# remove the command from the action string to get thought
|
|
thought = action_str.replace(bash_command.group(0), '').strip()
|
|
# a command was found
|
|
command_group = bash_command.group(1).strip()
|
|
if command_group.strip() == 'exit':
|
|
return AgentFinishAction()
|
|
return CmdRunAction(command=command_group, thought=thought)
|
|
elif python_code := re.search(r'<execute_ipython>(.*)</execute_ipython>', action_str, re.DOTALL):
|
|
# a code block was found
|
|
code_group = python_code.group(1).strip()
|
|
thought = action_str.replace(python_code.group(0), '').strip()
|
|
return IPythonRunCellAction(code=code_group, thought=thought)
|
|
else:
|
|
# We assume the LLM is GOOD enough that when it returns pure natural language
|
|
# it want to talk to the user
|
|
return AgentTalkAction(content=action_str)
|
|
|
|
def search_memory(self, query: str) -> List[str]:
|
|
raise NotImplementedError('Implement this abstract method')
|