import re from typing import List, Mapping from agenthub.codeact_agent.prompt import EXAMPLES, SYSTEM_MESSAGE from opendevin.agent import Agent from opendevin.events.action import ( Action, AgentEchoAction, AgentFinishAction, AgentTalkAction, CmdRunAction, IPythonRunCellAction, NullAction, ) from opendevin.events.observation import ( AgentMessageObservation, CmdOutputObservation, IPythonRunCellObservation, UserMessageObservation, ) from opendevin.llm.llm import LLM from opendevin.sandbox.plugins import ( JupyterRequirement, PluginRequirement, SWEAgentCommandsRequirement, ) from opendevin.state import State def parse_response(response) -> str: action = response.choices[0].message.content for lang in ['bash', 'ipython']: if f'' in action and f'' not in action: action += f'' return action def truncate_observation(observation: str, max_chars: int=5000) -> str: """ Truncate the middle of the observation if it is too long. """ if len(observation) <= max_chars: return observation half = max_chars // 2 return observation[:half] + '\n[... Observation truncated due to length ...]\n' + observation[-half:] class CodeActAgent(Agent): """ The Code Act Agent is a minimalist agent. The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step. """ sandbox_plugins: List[PluginRequirement] = [JupyterRequirement(), SWEAgentCommandsRequirement()] SUPPORTED_ACTIONS = ( CmdRunAction, IPythonRunCellAction, AgentEchoAction, AgentTalkAction, NullAction ) SUPPORTED_OBSERVATIONS = ( AgentMessageObservation, UserMessageObservation, CmdOutputObservation, IPythonRunCellObservation ) def __init__( self, llm: LLM, ) -> None: """ Initializes a new instance of the CodeActAgent class. Parameters: - llm (LLM): The llm to be used by this agent """ super().__init__(llm) self.messages: List[Mapping[str, str]] = [] def step(self, state: State) -> Action: """ Performs one step using the Code Act Agent. This includes gathering info on previous steps and prompting the model to make a command to execute. Parameters: - state (State): used to get updated info and background commands Returns: - CmdRunAction(command) - command action to run - AgentEchoAction(content=INVALID_INPUT_MESSAGE) - invalid command output Raises: - NotImplementedError - for actions other than CmdOutputObservation or AgentMessageObservation """ if len(self.messages) == 0: assert state.plan.main_goal, 'Expecting instruction to be set' self.messages = [ {'role': 'system', 'content': SYSTEM_MESSAGE}, { 'role': 'user', 'content': ( f'Here is an example of how you can interact with the environment for task solving:\n{EXAMPLES}\n\n' f"NOW, LET'S START!\n\n{state.plan.main_goal}" ) }, ] updated_info = state.updated_info if updated_info: for prev_action, obs in updated_info: assert isinstance( prev_action, self.SUPPORTED_ACTIONS ), f'{prev_action.__class__} is not supported (supported: {self.SUPPORTED_ACTIONS})' # prev_action is already added to self.messages when returned # handle observations assert isinstance( obs, self.SUPPORTED_OBSERVATIONS ), f'{obs.__class__} is not supported (supported: {self.SUPPORTED_OBSERVATIONS})' if isinstance(obs, (AgentMessageObservation, UserMessageObservation)): self.messages.append( {'role': 'user', 'content': obs.content}) # User wants to exit if obs.content.strip() == '/exit': return AgentFinishAction() elif isinstance(obs, CmdOutputObservation): content = 'OBSERVATION:\n' + truncate_observation(obs.content) content += f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]' self.messages.append({'role': 'user', 'content': content}) elif isinstance(obs, IPythonRunCellObservation): content = 'OBSERVATION:\n' + obs.content # replace base64 images with a placeholder splited = content.split('\n') for i, line in enumerate(splited): if '![image](data:image/png;base64,' in line: splited[i] = '![image](data:image/png;base64, ...) already displayed to user' content = '\n'.join(splited) content = truncate_observation(content) self.messages.append({'role': 'user', 'content': content}) else: raise NotImplementedError( f'Unknown observation type: {obs.__class__}' ) response = self.llm.completion( messages=self.messages, stop=[ '', '', ], temperature=0.0 ) action_str: str = parse_response(response) state.num_of_chars += sum( len(message['content']) for message in self.messages ) + len(action_str) self.messages.append({'role': 'assistant', 'content': action_str}) if bash_command := re.search(r'(.*)', action_str, re.DOTALL): # remove the command from the action string to get thought thought = action_str.replace(bash_command.group(0), '').strip() # a command was found command_group = bash_command.group(1).strip() if command_group.strip() == 'exit': return AgentFinishAction() return CmdRunAction(command=command_group, thought=thought) elif python_code := re.search(r'(.*)', action_str, re.DOTALL): # a code block was found code_group = python_code.group(1).strip() thought = action_str.replace(python_code.group(0), '').strip() return IPythonRunCellAction(code=code_group, thought=thought) else: # We assume the LLM is GOOD enough that when it returns pure natural language # it want to talk to the user return AgentTalkAction(content=action_str) def search_memory(self, query: str) -> List[str]: raise NotImplementedError('Implement this abstract method')