Alex Bäuerle cd58194d2a
docs(docs): start implementing docs website (#1372)
* docs(docs): start implementing docs website

* update video url

* add autogenerated codebase docs for backend

* precommit

* update links

* fix config and video

* gh actions

* rename

* workdirs

* path

* path

* fix doc1

* redo markdown

* docs

* change main folder name

* simplify readme

* add back architecture

* Fix lint errors

* lint

* update poetry lock

---------

Co-authored-by: Jim Su <jimsu@protonmail.com>
2024-04-29 10:00:51 -07:00

111 lines
5.2 KiB
Markdown

---
sidebar_position: 3
---
# 🧠 Agents and Capabilities
## Monologue Agent
### Description
The Monologue Agent utilizes long and short term memory to complete tasks.
Long term memory is stored as a LongTermMemory object and the model uses it to search for examples from the past.
Short term memory is stored as a Monologue object and the model can condense it as necessary.
### Actions
`Action`,
`NullAction`,
`CmdRunAction`,
`FileWriteAction`,
`FileReadAction`,
`AgentRecallAction`,
`BrowseURLAction`,
`GithubPushAction`,
`AgentThinkAction`
### Observations
`Observation`,
`NullObservation`,
`CmdOutputObservation`,
`FileReadObservation`,
`AgentRecallObservation`,
`BrowserOutputObservation`
### Methods
| Method | Description |
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
| `__init__` | Initializes the agent with a long term memory, and an internal monologue |
| `_add_event` | Appends events to the monologue of the agent and condenses with summary automatically if the monologue is too long |
| `_initialize` | Utilizes the `INITIAL_THOUGHTS` list to give the agent a context for its capabilities and how to navigate the `/workspace` |
| `step` | Modifies the current state by adding the most recent actions and observations, then prompts the model to think about its next action to take. |
| `search_memory` | Uses `VectorIndexRetriever` to find related memories within the long term memory. |
## Planner Agent
### Description
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
### Actions
`NullAction`,
`CmdRunAction`,
`CmdKillAction`,
`BrowseURLAction`,
`GithubPushAction`,
`FileReadAction`,
`FileWriteAction`,
`AgentRecallAction`,
`AgentThinkAction`,
`AgentFinishAction`,
`AgentSummarizeAction`,
`AddTaskAction`,
`ModifyTaskAction`,
### Observations
`Observation`,
`NullObservation`,
`CmdOutputObservation`,
`FileReadObservation`,
`AgentRecallObservation`,
`BrowserOutputObservation`
### Methods
| Method | Description |
| --------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `__init__` | Initializes an agent with `llm` |
| `step` | Checks to see if current step is completed, returns `AgentFinishAction` if True. Otherwise, creates a plan prompt and sends to model for inference, adding the result as the next action. |
| `search_memory` | Not yet implemented |
## CodeAct Agent
### Description
The Code Act Agent is a minimalist agent. The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Actions
`Action`,
`CmdRunAction`,
`AgentEchoAction`,
`AgentFinishAction`,
### Observations
`CmdOutputObservation`,
`AgentMessageObservation`,
### Methods
| Method | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `__init__` | Initializes an agent with `llm` and a list of messages `List[Mapping[str, str]]` |
| `step` | First, gets messages from state and then compiles them into a list for context. Next, pass the context list with the prompt to get the next command to execute. Finally, Execute command if valid, else return `AgentEchoAction(INVALID_INPUT_MESSAGE)` |
| `search_memory` | Not yet implemented |