Alex Bäuerle cd58194d2a
docs(docs): start implementing docs website (#1372)
* docs(docs): start implementing docs website

* update video url

* add autogenerated codebase docs for backend

* precommit

* update links

* fix config and video

* gh actions

* rename

* workdirs

* path

* path

* fix doc1

* redo markdown

* docs

* change main folder name

* simplify readme

* add back architecture

* Fix lint errors

* lint

* update poetry lock

---------

Co-authored-by: Jim Su <jimsu@protonmail.com>
2024-04-29 10:00:51 -07:00

46 lines
1.0 KiB
Markdown

---
sidebar_label: agent
title: agenthub.planner_agent.agent
---
## PlannerAgent Objects
```python
class PlannerAgent(Agent)
```
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
#### \_\_init\_\_
```python
def __init__(llm: LLM)
```
Initialize the Planner Agent with an LLM
**Arguments**:
- llm (LLM): The llm to be used by this agent
#### step
```python
def step(state: State) -> Action
```
Checks to see if current step is completed, returns AgentFinishAction if True.
Otherwise, creates a plan prompt and sends to model for inference, returning the result as the next action.
**Arguments**:
- state (State): The current state given the previous actions and observations
**Returns**:
- AgentFinishAction: If the last state was &#x27;completed&#x27;, &#x27;verified&#x27;, or &#x27;abandoned&#x27;
- Action: The next action to take based on llm response