Alex Bäuerle cd58194d2a
docs(docs): start implementing docs website (#1372)
* docs(docs): start implementing docs website

* update video url

* add autogenerated codebase docs for backend

* precommit

* update links

* fix config and video

* gh actions

* rename

* workdirs

* path

* path

* fix doc1

* redo markdown

* docs

* change main folder name

* simplify readme

* add back architecture

* Fix lint errors

* lint

* update poetry lock

---------

Co-authored-by: Jim Su <jimsu@protonmail.com>
2024-04-29 10:00:51 -07:00

1.0 KiB

sidebar_label, title
sidebar_label title
agent agenthub.delegator_agent.agent

DelegatorAgent Objects

class DelegatorAgent(Agent)

The planner agent utilizes a special prompting strategy to create long term plans for solving problems. The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.

__init__

def __init__(llm: LLM)

Initialize the Delegator Agent with an LLM

Arguments:

  • llm (LLM): The llm to be used by this agent

step

def step(state: State) -> Action

Checks to see if current step is completed, returns AgentFinishAction if True. Otherwise, creates a plan prompt and sends to model for inference, returning the result as the next action.

Arguments:

  • state (State): The current state given the previous actions and observations

Returns:

  • AgentFinishAction: If the last state was 'completed', 'verified', or 'abandoned'
  • Action: The next action to take based on llm response