mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
203 lines
6.0 KiB
Python
203 lines
6.0 KiB
Python
import asyncio
|
|
import importlib.util
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
from evaluation.integration_tests.tests.base import BaseIntegrationTest, TestResult
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import MessageAction
|
|
from openhands.runtime.runtime import Runtime
|
|
|
|
FAKE_RESPONSES = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='eventstream',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
# use default base_container_image
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
timeout=100,
|
|
),
|
|
# do not mount workspace
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
return config
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
|
|
else:
|
|
logger.info(
|
|
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
|
|
)
|
|
|
|
# =============================================
|
|
# import test instance
|
|
# =============================================
|
|
instance_id = instance.instance_id
|
|
spec = importlib.util.spec_from_file_location(instance_id, instance.file_path)
|
|
test_module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(test_module)
|
|
assert hasattr(
|
|
test_module, 'Test'
|
|
), f'Test module {instance_id} does not have a Test class'
|
|
|
|
test_class: type[BaseIntegrationTest] = test_module.Test
|
|
assert issubclass(
|
|
test_class, BaseIntegrationTest
|
|
), f'Test class {instance_id} does not inherit from BaseIntegrationTest'
|
|
|
|
instruction = test_class.INSTRUCTION
|
|
|
|
# =============================================
|
|
# create sandbox and run the agent
|
|
# =============================================
|
|
|
|
runtime: Runtime = create_runtime(config)
|
|
|
|
test_class.initialize_runtime(runtime)
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
|
|
)
|
|
)
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
# # =============================================
|
|
# # result evaluation
|
|
# # =============================================
|
|
|
|
histories = state.history.get_events()
|
|
test_result: TestResult = test_class.verify_result(runtime, histories)
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# Save the output
|
|
output = EvalOutput(
|
|
instance_id=str(instance.instance_id),
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result.model_dump(),
|
|
)
|
|
return output
|
|
|
|
|
|
def load_integration_tests() -> pd.DataFrame:
|
|
"""Load tests from python files under ./tests"""
|
|
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
|
test_dir = os.path.join(cur_dir, 'tests')
|
|
test_files = [
|
|
os.path.join(test_dir, f)
|
|
for f in os.listdir(test_dir)
|
|
if f.startswith('t') and f.endswith('.py')
|
|
]
|
|
df = pd.DataFrame(test_files, columns=['file_path'])
|
|
df['instance_id'] = df['file_path'].apply(
|
|
lambda x: os.path.basename(x).rstrip('.py')
|
|
)
|
|
return df
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
integration_tests = load_integration_tests()
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'integration_tests',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
|
|
# Parse dataset IDs if provided
|
|
eval_ids = None
|
|
if args.eval_ids:
|
|
eval_ids = str(args.eval_ids).split(',')
|
|
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
|
|
|
|
instances = prepare_dataset(
|
|
integration_tests,
|
|
output_file,
|
|
args.eval_n_limit,
|
|
eval_ids=eval_ids,
|
|
)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|
|
df = pd.read_json(output_file, lines=True, orient='records')
|
|
df['success'] = df['test_result'].apply(lambda x: x['success'])
|
|
df['reason'] = df['test_result'].apply(lambda x: x['reason'])
|
|
logger.info('-' * 100)
|
|
logger.info(
|
|
f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})'
|
|
)
|
|
logger.info(
|
|
'\nEvaluation Results:'
|
|
+ '\n'
|
|
+ df[['instance_id', 'success', 'reason']].to_string(index=False)
|
|
)
|
|
logger.info('-' * 100)
|