mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 02:06:20 +08:00
194 lines
6.5 KiB
Python
194 lines
6.5 KiB
Python
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
from dotenv import load_dotenv
|
|
|
|
from camel.models import ModelFactory
|
|
from camel.toolkits import (
|
|
ExcelToolkit,
|
|
SearchToolkit,
|
|
FileWriteToolkit,
|
|
CodeExecutionToolkit,
|
|
BrowserToolkit,
|
|
VideoAnalysisToolkit,
|
|
ImageAnalysisToolkit,
|
|
)
|
|
from camel.types import ModelPlatformType, ModelType
|
|
from camel.societies import RolePlaying
|
|
from camel.logger import set_log_level
|
|
|
|
from owl.utils import run_society, DocumentProcessingToolkit
|
|
|
|
import pathlib
|
|
|
|
# Set the log level to DEBUG for detailed debugging information
|
|
set_log_level(level="DEBUG")
|
|
|
|
# Get the parent directory of the current file and construct the path to the .env file
|
|
base_dir = pathlib.Path(__file__).parent.parent
|
|
env_path = base_dir / "owl" / ".env"
|
|
load_dotenv(dotenv_path=str(env_path))
|
|
|
|
|
|
def get_user_input(prompt):
|
|
# Get user input and strip leading/trailing whitespace
|
|
return input(prompt).strip()
|
|
|
|
|
|
def get_construct_params() -> dict[str, any]:
|
|
# Welcome message
|
|
print("Welcome to owl! Have fun!")
|
|
|
|
# Select model platform type
|
|
model_platforms = ModelPlatformType
|
|
print("Please select the model platform type:")
|
|
for i, platform in enumerate(model_platforms, 1):
|
|
print(f"{i}. {platform}")
|
|
model_platform_choice = int(
|
|
get_user_input("Please enter the model platform number:")
|
|
)
|
|
selected_model_platform = list(model_platforms)[model_platform_choice - 1]
|
|
print(f"The model platform you selected is: {selected_model_platform}")
|
|
|
|
# Select model type
|
|
models = ModelType
|
|
print("Please select the model type:")
|
|
for i, model in enumerate(models, 1):
|
|
print(f"{i}. {model}")
|
|
model_choice = int(get_user_input("Please enter the model number:"))
|
|
selected_model = list(models)[model_choice - 1]
|
|
print(f"The model you selected is: {selected_model}")
|
|
|
|
# Select language
|
|
languages = ["English", "Chinese"]
|
|
print("Please select the language:")
|
|
for i, lang in enumerate(languages, 1):
|
|
print(f"{i}. {lang}")
|
|
language_choice = int(get_user_input("Please enter the language number:"))
|
|
selected_language = languages[language_choice - 1]
|
|
print(f"The language you selected is: {selected_language}")
|
|
|
|
# Enter the question
|
|
question = get_user_input("Please enter your question:")
|
|
print(f"Your question is: {question}")
|
|
|
|
return {
|
|
"language": selected_language,
|
|
"model_type": selected_model,
|
|
"model_platform": selected_model_platform,
|
|
"question": question,
|
|
}
|
|
|
|
|
|
def construct_society() -> RolePlaying:
|
|
# Get user input parameters
|
|
params = get_construct_params()
|
|
question = params["question"]
|
|
selected_model_type = params["model_type"]
|
|
selected_model_platform = params["model_platform"]
|
|
selected_language = params["language"]
|
|
|
|
# Create model instances for different roles
|
|
models = {
|
|
"user": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"assistant": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"browsing": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"planning": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"video": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"image": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"document": ModelFactory.create(
|
|
model_platform=selected_model_platform,
|
|
model_type=selected_model_type,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
}
|
|
|
|
# Configure toolkits
|
|
tools = [
|
|
*BrowserToolkit(
|
|
headless=False,
|
|
web_agent_model=models["browsing"],
|
|
planning_agent_model=models["planning"],
|
|
).get_tools(),
|
|
*VideoAnalysisToolkit(model=models["video"]).get_tools(),
|
|
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
|
|
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
|
|
SearchToolkit().search_duckduckgo,
|
|
SearchToolkit().search_google,
|
|
SearchToolkit().search_wiki,
|
|
SearchToolkit().search_baidu,
|
|
SearchToolkit().search_bing,
|
|
*ExcelToolkit().get_tools(),
|
|
*DocumentProcessingToolkit(model=models["document"]).get_tools(),
|
|
*FileWriteToolkit(output_dir="./").get_tools(),
|
|
]
|
|
|
|
# Configure agent roles and parameters
|
|
user_agent_kwargs = {"model": models["user"]}
|
|
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
|
|
|
# Configure task parameters
|
|
task_kwargs = {
|
|
"task_prompt": question,
|
|
"with_task_specify": False,
|
|
}
|
|
|
|
# Create and return the society
|
|
society = RolePlaying(
|
|
**task_kwargs,
|
|
user_role_name="user",
|
|
user_agent_kwargs=user_agent_kwargs,
|
|
assistant_role_name="assistant",
|
|
assistant_agent_kwargs=assistant_agent_kwargs,
|
|
output_language=selected_language,
|
|
)
|
|
|
|
return society
|
|
|
|
|
|
def main():
|
|
# Construct the society
|
|
society = construct_society()
|
|
# Run the society and get the answer, chat history, and token count
|
|
answer, chat_history, token_count = run_society(society)
|
|
# Print the answer
|
|
print(f"\033[94mAnswer: {answer}\033[0m")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|