mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 18:27:28 +08:00
115 lines
3.6 KiB
Python
115 lines
3.6 KiB
Python
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
|
|
# To run this file, you need to configure the Qwen API key
|
|
# You can obtain your API key from Bailian platform: bailian.console.aliyun.com
|
|
# Set it as QWEN_API_KEY="your-api-key" in your .env file or add it to your environment variables
|
|
|
|
from dotenv import load_dotenv
|
|
import sys
|
|
from camel.models import ModelFactory
|
|
from camel.toolkits import BrowserToolkit, SearchToolkit, FileWriteToolkit
|
|
from camel.types import ModelPlatformType, ModelType
|
|
|
|
from owl.utils import run_society
|
|
|
|
from camel.societies import RolePlaying
|
|
|
|
from camel.logger import set_log_level
|
|
|
|
import pathlib
|
|
|
|
base_dir = pathlib.Path(__file__).parent.parent
|
|
env_path = base_dir / "owl" / ".env"
|
|
load_dotenv(dotenv_path=str(env_path))
|
|
|
|
set_log_level(level="DEBUG")
|
|
|
|
|
|
def construct_society(question: str) -> RolePlaying:
|
|
r"""Construct the society based on the question."""
|
|
|
|
user_role_name = "user"
|
|
assistant_role_name = "assistant"
|
|
|
|
user_model = ModelFactory.create(
|
|
model_platform=ModelPlatformType.QWEN,
|
|
model_type=ModelType.QWEN_MAX,
|
|
model_config_dict={"temperature": 0},
|
|
)
|
|
|
|
assistant_model = ModelFactory.create(
|
|
model_platform=ModelPlatformType.QWEN,
|
|
model_type=ModelType.QWEN_MAX,
|
|
model_config_dict={"temperature": 0},
|
|
)
|
|
|
|
planning_model = ModelFactory.create(
|
|
model_platform=ModelPlatformType.QWEN,
|
|
model_type=ModelType.QWEN_MAX,
|
|
model_config_dict={"temperature": 0},
|
|
)
|
|
|
|
web_model = ModelFactory.create(
|
|
model_platform=ModelPlatformType.QWEN,
|
|
model_type=ModelType.QWEN_VL_MAX,
|
|
model_config_dict={"temperature": 0},
|
|
)
|
|
|
|
tools_list = [
|
|
*BrowserToolkit(
|
|
headless=False,
|
|
web_agent_model=web_model,
|
|
planning_agent_model=planning_model,
|
|
output_language="Chinese",
|
|
).get_tools(),
|
|
SearchToolkit().search_baidu,
|
|
*FileWriteToolkit(output_dir="./").get_tools(),
|
|
]
|
|
|
|
user_role_name = "user"
|
|
user_agent_kwargs = dict(model=user_model)
|
|
assistant_role_name = "assistant"
|
|
assistant_agent_kwargs = dict(model=assistant_model, tools=tools_list)
|
|
|
|
task_kwargs = {
|
|
"task_prompt": question,
|
|
"with_task_specify": False,
|
|
}
|
|
|
|
society = RolePlaying(
|
|
**task_kwargs,
|
|
user_role_name=user_role_name,
|
|
user_agent_kwargs=user_agent_kwargs,
|
|
assistant_role_name=assistant_role_name,
|
|
assistant_agent_kwargs=assistant_agent_kwargs,
|
|
output_language="Chinese",
|
|
)
|
|
|
|
return society
|
|
|
|
|
|
# Example case
|
|
default_task = "浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格"
|
|
|
|
# Override default task if command line argument is provided
|
|
task = sys.argv[1] if len(sys.argv) > 1 else default_task
|
|
|
|
# Construct and run the society
|
|
society = construct_society(task)
|
|
|
|
answer, chat_history, token_count = run_society(society)
|
|
|
|
print(f"\033[94mAnswer: {answer}\033[0m")
|