owl/examples/run_terminal_zh.py
2025-03-15 12:24:31 +08:00

125 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from dotenv import load_dotenv
import os
from camel.models import ModelFactory
from camel.toolkits import (
SearchToolkit,
BrowserToolkit,
FileWriteToolkit,
TerminalToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.logger import set_log_level
from owl.utils import run_society
from camel.societies import RolePlaying
load_dotenv()
set_log_level(level="DEBUG")
# Get current script directory
base_dir = os.path.dirname(os.path.abspath(__file__))
def construct_society(question: str) -> RolePlaying:
r"""Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
RolePlaying: A configured society of agents ready to address the
question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"web": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
}
# Configure toolkits
tools = [
*BrowserToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["web"],
planning_agent_model=models["planning"],
).get_tools(),
SearchToolkit().search_duckduckgo,
SearchToolkit().search_wiki,
*FileWriteToolkit(output_dir="./").get_tools(),
*TerminalToolkit().get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = RolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Example research question
question = f"""打开百度搜索总结一下camel-ai的camel框架的github star、fork数目等并把数字用plot包写成python文件保存到"+{os.path.join
(base_dir, 'final_output')}+"用本地终端执行python文件显示图出来给我"""
# Construct and run the society
society = construct_society(question)
answer, chat_history, token_count = run_society(society)
# Output the result
print(
f"\033[94mAnswer: {answer}\nChat History: {chat_history}\ntoken_count:{token_count}\033[0m"
)
if __name__ == "__main__":
main()