mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 10:07:51 +08:00
124 lines
4.1 KiB
Python
124 lines
4.1 KiB
Python
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
import os
|
|
import sys
|
|
from dotenv import load_dotenv
|
|
from camel.configs import ChatGPTConfig
|
|
from camel.models import ModelFactory
|
|
from camel.toolkits import (
|
|
CodeExecutionToolkit,
|
|
ExcelToolkit,
|
|
ImageAnalysisToolkit,
|
|
SearchToolkit,
|
|
BrowserToolkit,
|
|
FileWriteToolkit,
|
|
)
|
|
from camel.types import ModelPlatformType
|
|
|
|
from owl.utils import OwlRolePlaying, run_society
|
|
|
|
from camel.logger import set_log_level
|
|
|
|
import pathlib
|
|
|
|
base_dir = pathlib.Path(__file__).parent.parent
|
|
env_path = base_dir / "owl" / ".env"
|
|
load_dotenv(dotenv_path=str(env_path))
|
|
|
|
set_log_level(level="DEBUG")
|
|
|
|
|
|
def construct_society(question: str) -> OwlRolePlaying:
|
|
r"""Construct a society of agents based on the given question.
|
|
|
|
Args:
|
|
question (str): The task or question to be addressed by the society.
|
|
|
|
Returns:
|
|
OwlRolePlaying: A configured society of agents ready to address the question.
|
|
"""
|
|
|
|
# Create models for different components using Azure OpenAI
|
|
base_model_config = {
|
|
"model_platform": ModelPlatformType.AZURE,
|
|
"model_type": os.getenv("AZURE_OPENAI_MODEL_TYPE"),
|
|
"model_config_dict": ChatGPTConfig(temperature=0.4, max_tokens=4096).as_dict(),
|
|
}
|
|
|
|
models = {
|
|
"user": ModelFactory.create(**base_model_config),
|
|
"assistant": ModelFactory.create(**base_model_config),
|
|
"browsing": ModelFactory.create(**base_model_config),
|
|
"planning": ModelFactory.create(**base_model_config),
|
|
"image": ModelFactory.create(**base_model_config),
|
|
}
|
|
|
|
# Configure toolkits
|
|
tools = [
|
|
*BrowserToolkit(
|
|
headless=False, # Set to True for headless mode (e.g., on remote servers)
|
|
web_agent_model=models["browsing"],
|
|
planning_agent_model=models["planning"],
|
|
).get_tools(),
|
|
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
|
|
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
|
|
SearchToolkit().search_duckduckgo,
|
|
SearchToolkit().search_google, # Comment this out if you don't have google search
|
|
SearchToolkit().search_wiki,
|
|
*ExcelToolkit().get_tools(),
|
|
*FileWriteToolkit(output_dir="./").get_tools(),
|
|
]
|
|
|
|
# Configure agent roles and parameters
|
|
user_agent_kwargs = {"model": models["user"]}
|
|
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
|
|
|
# Configure task parameters
|
|
task_kwargs = {
|
|
"task_prompt": question,
|
|
"with_task_specify": False,
|
|
}
|
|
|
|
# Create and return the society
|
|
society = OwlRolePlaying(
|
|
**task_kwargs,
|
|
user_role_name="user",
|
|
user_agent_kwargs=user_agent_kwargs,
|
|
assistant_role_name="assistant",
|
|
assistant_agent_kwargs=assistant_agent_kwargs,
|
|
)
|
|
|
|
return society
|
|
|
|
|
|
def main():
|
|
r"""Main function to run the OWL system with Azure OpenAI."""
|
|
# Example question
|
|
default_task = "Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer."
|
|
|
|
# Override default task if command line argument is provided
|
|
task = sys.argv[1] if len(sys.argv) > 1 else default_task
|
|
|
|
# Construct and run the society
|
|
society = construct_society(task)
|
|
|
|
answer, chat_history, token_count = run_society(society)
|
|
|
|
# Output the result
|
|
print(f"\033[94mAnswer: {answer}\033[0m")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|