mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 02:06:20 +08:00
136 lines
4.8 KiB
Python
136 lines
4.8 KiB
Python
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
import sys
|
|
import pathlib
|
|
from dotenv import load_dotenv
|
|
from camel.models import ModelFactory
|
|
from camel.toolkits import (
|
|
CodeExecutionToolkit,
|
|
ExcelToolkit,
|
|
ImageAnalysisToolkit,
|
|
BrowserToolkit,
|
|
FileWriteToolkit,
|
|
)
|
|
from camel.types import ModelPlatformType, ModelType
|
|
from camel.logger import set_log_level
|
|
from camel.societies import RolePlaying
|
|
|
|
from owl.utils import run_society, DocumentProcessingToolkit
|
|
|
|
base_dir = pathlib.Path(__file__).parent.parent
|
|
env_path = base_dir / "owl" / ".env"
|
|
load_dotenv(dotenv_path=str(env_path))
|
|
|
|
set_log_level(level="DEBUG")
|
|
|
|
|
|
def construct_society(question: str) -> RolePlaying:
|
|
r"""Construct a society of agents based on the given question.
|
|
|
|
Args:
|
|
question (str): The task or question to be addressed by the society.
|
|
|
|
Returns:
|
|
RolePlaying: A configured society of agents ready to address the question.
|
|
"""
|
|
|
|
# Create models for different components
|
|
models = {
|
|
"user": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"assistant": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"browsing": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"planning": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"image": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
"document": ModelFactory.create(
|
|
model_platform=ModelPlatformType.TOGETHER,
|
|
model_type=ModelType.TOGETHER_LLAMA_4_MAVERICK,
|
|
model_config_dict={"temperature": 0},
|
|
),
|
|
}
|
|
|
|
# Configure toolkits
|
|
tools = [
|
|
*BrowserToolkit(
|
|
headless=False, # Set to True for headless mode (e.g., on remote servers)
|
|
web_agent_model=models["browsing"],
|
|
planning_agent_model=models["planning"],
|
|
).get_tools(),
|
|
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
|
|
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
|
|
*ExcelToolkit().get_tools(),
|
|
*DocumentProcessingToolkit(model=models["document"]).get_tools(),
|
|
*FileWriteToolkit(output_dir="./").get_tools(),
|
|
]
|
|
|
|
# Configure agent roles and parameters
|
|
user_agent_kwargs = {"model": models["user"]}
|
|
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
|
|
|
# Configure task parameters
|
|
task_kwargs = {
|
|
"task_prompt": question,
|
|
"with_task_specify": False,
|
|
}
|
|
|
|
# Create and return the society
|
|
society = RolePlaying(
|
|
**task_kwargs,
|
|
user_role_name="user",
|
|
user_agent_kwargs=user_agent_kwargs,
|
|
assistant_role_name="assistant",
|
|
assistant_agent_kwargs=assistant_agent_kwargs,
|
|
)
|
|
|
|
return society
|
|
|
|
|
|
def main():
|
|
r"""Main function to run the OWL system with an example question."""
|
|
# Default research question
|
|
default_task = "Open Brave search, summarize the github stars, fork counts, etc. of camel-ai's camel framework, and write the numbers into a python file using the plot package, save it locally, and run the generated python file. Note: You have been provided with the necessary tools to complete this task."
|
|
|
|
# Override default task if command line argument is provided
|
|
task = sys.argv[1] if len(sys.argv) > 1 else default_task
|
|
|
|
# Construct and run the society
|
|
society = construct_society(task)
|
|
answer, chat_history, token_count = run_society(society)
|
|
|
|
# Output the result
|
|
print(f"\033[94mAnswer: {answer}\033[0m")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|