owl/examples/run_ppio.py
2025-03-25 19:44:20 +08:00

121 lines
3.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# To run this file, you need to configure the PPIO API key
# You can obtain your API key from PPIO platform: https://ppinfra.com/settings/key-management?utm_source=github_owl
# Set it as PPIO_API_KEY="your-api-key" in your .env file or add it to your environment variables
import sys
from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.toolkits import (
ExcelToolkit,
SearchToolkit,
FileWriteToolkit,
CodeExecutionToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.societies import RolePlaying
from camel.logger import set_log_level
from owl.utils import run_society
import pathlib
set_log_level(level="DEBUG")
base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))
def construct_society(question: str) -> RolePlaying:
r"""Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
RolePlaying: A configured society of agents ready to address the question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.PPIO,
model_type=ModelType.PPIO_DEEPSEEK_V3_COMMUNITY,
model_config_dict={"temperature": 0},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.PPIO,
model_type=ModelType.PPIO_DEEPSEEK_V3_COMMUNITY,
model_config_dict={"temperature": 0},
),
}
# Configure toolkits
tools = [
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
SearchToolkit().search_duckduckgo,
SearchToolkit().search_wiki,
SearchToolkit().search_baidu,
*ExcelToolkit().get_tools(),
*FileWriteToolkit(output_dir="./").get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = RolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
output_language="Chinese",
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Example research question
default_task = "使用百度整理2023年1月1日到2023年12月31日中国股市的涨跌情况。"
# Override default task if command line argument is provided
task = sys.argv[1] if len(sys.argv) > 1 else default_task
# Construct and run the society
society = construct_society(task)
answer, chat_history, token_count = run_society(society)
# Output the result
print(f"\033[94mAnswer: {answer}\033[0m")
if __name__ == "__main__":
main()