mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 02:06:20 +08:00
144 lines
5.0 KiB
Python
144 lines
5.0 KiB
Python
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
||
# run_ollama.py by tj-scripts(https://github.com/tj-scripts)
|
||
|
||
import sys
|
||
from dotenv import load_dotenv
|
||
from camel.models import ModelFactory
|
||
from camel.toolkits import (
|
||
CodeExecutionToolkit,
|
||
ExcelToolkit,
|
||
ImageAnalysisToolkit,
|
||
SearchToolkit,
|
||
BrowserToolkit,
|
||
FileWriteToolkit,
|
||
)
|
||
from camel.types import ModelPlatformType
|
||
|
||
from owl.utils import run_society
|
||
|
||
from camel.societies import RolePlaying
|
||
|
||
from camel.logger import set_log_level
|
||
|
||
import pathlib
|
||
|
||
base_dir = pathlib.Path(__file__).parent.parent
|
||
env_path = base_dir / "owl" / ".env"
|
||
load_dotenv(dotenv_path=str(env_path))
|
||
|
||
set_log_level(level="DEBUG")
|
||
|
||
|
||
def construct_society(question: str) -> RolePlaying:
|
||
r"""Construct a society of agents based on the given question.
|
||
|
||
Args:
|
||
question (str): The task or question to be addressed by the society.
|
||
|
||
Returns:
|
||
RolePlaying: A configured society of agents ready to address the question.
|
||
"""
|
||
|
||
# Create models for different components
|
||
models = {
|
||
"user": ModelFactory.create(
|
||
model_platform=ModelPlatformType.OLLAMA,
|
||
model_type="qwen2.5:72b",
|
||
url="http://localhost:11434/v1",
|
||
model_config_dict={"temperature": 0.8, "max_tokens": 1000000},
|
||
),
|
||
"assistant": ModelFactory.create(
|
||
model_platform=ModelPlatformType.OLLAMA,
|
||
model_type="qwen2.5:72b",
|
||
url="http://localhost:11434/v1",
|
||
model_config_dict={"temperature": 0.2, "max_tokens": 1000000},
|
||
),
|
||
"browsing": ModelFactory.create(
|
||
model_platform=ModelPlatformType.OLLAMA,
|
||
model_type="llava:latest",
|
||
url="http://localhost:11434/v1",
|
||
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
|
||
),
|
||
"planning": ModelFactory.create(
|
||
model_platform=ModelPlatformType.OLLAMA,
|
||
model_type="qwen2.5:72b",
|
||
url="http://localhost:11434/v1",
|
||
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
|
||
),
|
||
"image": ModelFactory.create(
|
||
model_platform=ModelPlatformType.OLLAMA,
|
||
model_type="llava:latest",
|
||
url="http://localhost:11434/v1",
|
||
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
|
||
),
|
||
}
|
||
|
||
# Configure toolkits
|
||
tools = [
|
||
*BrowserToolkit(
|
||
headless=False, # Set to True for headless mode (e.g., on remote servers)
|
||
web_agent_model=models["browsing"],
|
||
planning_agent_model=models["planning"],
|
||
).get_tools(),
|
||
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
|
||
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
|
||
SearchToolkit().search_duckduckgo,
|
||
# SearchToolkit().search_google, # Comment this out if you don't have google search
|
||
SearchToolkit().search_wiki,
|
||
*ExcelToolkit().get_tools(),
|
||
*FileWriteToolkit(output_dir="./").get_tools(),
|
||
]
|
||
|
||
# Configure agent roles and parameters
|
||
user_agent_kwargs = {"model": models["user"]}
|
||
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
||
|
||
# Configure task parameters
|
||
task_kwargs = {
|
||
"task_prompt": question,
|
||
"with_task_specify": False,
|
||
}
|
||
|
||
# Create and return the society
|
||
society = RolePlaying(
|
||
**task_kwargs,
|
||
user_role_name="user",
|
||
user_agent_kwargs=user_agent_kwargs,
|
||
assistant_role_name="assistant",
|
||
assistant_agent_kwargs=assistant_agent_kwargs,
|
||
)
|
||
|
||
return society
|
||
|
||
|
||
def main():
|
||
r"""Main function to run the OWL system with an example question."""
|
||
# Default research question
|
||
default_task = "Open Brave search, summarize the github stars, fork counts, etc. of camel-ai's camel framework, and write the numbers into a python file using the plot package, save it locally, and run the generated python file. Note: You have been provided with the necessary tools to complete this task."
|
||
|
||
# Override default task if command line argument is provided
|
||
task = sys.argv[1] if len(sys.argv) > 1 else default_task
|
||
|
||
# Construct and run the society
|
||
society = construct_society(task)
|
||
answer, chat_history, token_count = run_society(society)
|
||
|
||
# Output the result
|
||
print(f"\033[94mAnswer: {answer}\033[0m")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|