owl/examples/run_ollama.py
2025-05-05 03:31:43 +08:00

144 lines
5.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# run_ollama.py by tj-scriptshttps://github.com/tj-scripts
import sys
from dotenv import load_dotenv
from camel.models import ModelFactory
from camel.toolkits import (
CodeExecutionToolkit,
ExcelToolkit,
ImageAnalysisToolkit,
SearchToolkit,
BrowserToolkit,
FileWriteToolkit,
)
from camel.types import ModelPlatformType
from owl.utils import run_society
from camel.societies import RolePlaying
from camel.logger import set_log_level
import pathlib
base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))
set_log_level(level="DEBUG")
def construct_society(question: str) -> RolePlaying:
r"""Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
RolePlaying: A configured society of agents ready to address the question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwen2.5:72b",
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.8, "max_tokens": 1000000},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwen2.5:72b",
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.2, "max_tokens": 1000000},
),
"browsing": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="llava:latest",
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="qwen2.5:72b",
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
"image": ModelFactory.create(
model_platform=ModelPlatformType.OLLAMA,
model_type="llava:latest",
url="http://localhost:11434/v1",
model_config_dict={"temperature": 0.4, "max_tokens": 1000000},
),
}
# Configure toolkits
tools = [
*BrowserToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["browsing"],
planning_agent_model=models["planning"],
).get_tools(),
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
SearchToolkit().search_duckduckgo,
# SearchToolkit().search_google, # Comment this out if you don't have google search
SearchToolkit().search_wiki,
*ExcelToolkit().get_tools(),
*FileWriteToolkit(output_dir="./").get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = RolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Default research question
default_task = "Open Brave search, summarize the github stars, fork counts, etc. of camel-ai's camel framework, and write the numbers into a python file using the plot package, save it locally, and run the generated python file. Note: You have been provided with the necessary tools to complete this task."
# Override default task if command line argument is provided
task = sys.argv[1] if len(sys.argv) > 1 else default_task
# Construct and run the society
society = construct_society(task)
answer, chat_history, token_count = run_society(society)
# Output the result
print(f"\033[94mAnswer: {answer}\033[0m")
if __name__ == "__main__":
main()