mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 10:07:51 +08:00
run module for Mistral models (#451)
This commit is contained in:
commit
9b64be7f2c
135
examples/run_mistral.py
Normal file
135
examples/run_mistral.py
Normal file
@ -0,0 +1,135 @@
|
||||
import sys
|
||||
import pathlib
|
||||
from dotenv import load_dotenv
|
||||
from camel.models import ModelFactory
|
||||
from camel.toolkits import (
|
||||
AudioAnalysisToolkit,
|
||||
CodeExecutionToolkit,
|
||||
ExcelToolkit,
|
||||
ImageAnalysisToolkit,
|
||||
SearchToolkit,
|
||||
VideoAnalysisToolkit,
|
||||
BrowserToolkit,
|
||||
FileWriteToolkit,
|
||||
)
|
||||
from camel.types import ModelPlatformType, ModelType
|
||||
from camel.logger import set_log_level
|
||||
from camel.societies import RolePlaying
|
||||
|
||||
from owl.utils import run_society, DocumentProcessingToolkit
|
||||
|
||||
base_dir = pathlib.Path(__file__).parent.parent
|
||||
env_path = base_dir / "owl" / ".env"
|
||||
load_dotenv(dotenv_path=str(env_path))
|
||||
|
||||
set_log_level(level="DEBUG")
|
||||
|
||||
|
||||
def construct_society(question: str) -> RolePlaying:
|
||||
r"""Construct a society of agents based on Mistral model(s).
|
||||
|
||||
Args:
|
||||
question (str): The task or question to be addressed by the society.
|
||||
|
||||
Returns:
|
||||
RolePlaying: A configured society of agents ready to address the question.
|
||||
"""
|
||||
|
||||
# Create models for different components
|
||||
models = {
|
||||
"user": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_LARGE,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"assistant": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_LARGE,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"browsing": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_LARGE,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"planning": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_LARGE,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"video": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_PIXTRAL_12B,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"image": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_PIXTRAL_12B,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
"document": ModelFactory.create(
|
||||
model_platform=ModelPlatformType.MISTRAL,
|
||||
model_type=ModelType.MISTRAL_LARGE,
|
||||
model_config_dict={"temperature": 0},
|
||||
),
|
||||
}
|
||||
|
||||
# Configure toolkits
|
||||
tools = [
|
||||
*BrowserToolkit(
|
||||
headless=True,
|
||||
web_agent_model=models["browsing"],
|
||||
planning_agent_model=models["planning"],
|
||||
).get_tools(),
|
||||
*VideoAnalysisToolkit(model=models["video"]).get_tools(),
|
||||
*AudioAnalysisToolkit().get_tools(),
|
||||
*CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
|
||||
*ImageAnalysisToolkit(model=models["image"]).get_tools(),
|
||||
SearchToolkit().search_duckduckgo,
|
||||
SearchToolkit().search_google,
|
||||
SearchToolkit().search_wiki,
|
||||
*ExcelToolkit().get_tools(),
|
||||
*DocumentProcessingToolkit(model=models["document"]).get_tools(),
|
||||
*FileWriteToolkit(output_dir="./").get_tools(),
|
||||
]
|
||||
|
||||
# Configure agent roles and parameters
|
||||
user_agent_kwargs = {"model": models["user"]}
|
||||
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
|
||||
|
||||
# Configure task parameters
|
||||
task_kwargs = {
|
||||
"task_prompt": question,
|
||||
"with_task_specify": False,
|
||||
}
|
||||
|
||||
# Create and return the society
|
||||
society = RolePlaying(
|
||||
**task_kwargs,
|
||||
user_role_name="user",
|
||||
user_agent_kwargs=user_agent_kwargs,
|
||||
assistant_role_name="assistant",
|
||||
assistant_agent_kwargs=assistant_agent_kwargs,
|
||||
)
|
||||
|
||||
return society
|
||||
|
||||
|
||||
def main():
|
||||
r"""Main function to run the OWL system with an example question."""
|
||||
# Default research question
|
||||
default_task = "Navigate to Amazon.com and identify one product that is attractive to coders. Please provide me with the product name and price. No need to verify your answer."
|
||||
|
||||
# Override default task if command line argument is provided
|
||||
task = sys.argv[1] if len(sys.argv) > 1 else default_task
|
||||
|
||||
# Construct and run the society
|
||||
society = construct_society(task)
|
||||
answer, chat_history, token_count = run_society(society)
|
||||
|
||||
# Output the result
|
||||
print(f"\033[94mAnswer: {answer}\033[0m")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -246,6 +246,7 @@ MODULE_DESCRIPTIONS = {
|
||||
"run_mini": "Using OpenAI model with minimal configuration to process tasks",
|
||||
"run_gemini": "Using Gemini model to process tasks",
|
||||
"run_deepseek_zh": "Using deepseek model to process Chinese tasks",
|
||||
"run_mistral": "Using Mistral models to process tasks",
|
||||
"run_openai_compatible_model": "Using openai compatible model to process tasks",
|
||||
"run_ollama": "Using local ollama model to process tasks",
|
||||
"run_qwen_mini_zh": "Using qwen model with minimal configuration to process tasks",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user