mirror of
https://github.com/camel-ai/owl.git
synced 2025-12-26 10:07:51 +08:00
Create README.md (#517)
This commit is contained in:
commit
624082f592
142
community_usecase/qwen3_mcp/README.md
Normal file
142
community_usecase/qwen3_mcp/README.md
Normal file
@ -0,0 +1,142 @@
|
||||
# 🚀 OWL with Qwen3 MCP Integration
|
||||
|
||||
This project demonstrates how to use the [CAMEL-AI OWL framework](https://github.com/camel-ai/owl) with **Qwen3** large language model through MCP (Model Context Protocol). The example showcases improved terminal output formatting, markdown log generation, and seamless integration with MCP servers.
|
||||
|
||||
## ✨ Features
|
||||
|
||||
- **Enhanced Terminal Output**: Colorful, well-formatted console output for better readability
|
||||
- **Automatic Log Generation**: Creates detailed markdown logs of agent conversations with timestamps
|
||||
- **Qwen3 Integration**: Seamlessly uses Qwen3-Plus for both user and assistant agents
|
||||
- **MCP Server Support**: Connects to MCP servers including EdgeOne Pages and Playwright
|
||||
- **Robust Error Handling**: Graceful cleanup and exception management
|
||||
|
||||
## 📋 Prerequisites
|
||||
|
||||
- Python 3.10+
|
||||
- OWL framework installed
|
||||
- Qwen API key
|
||||
- Node.js (for Playwright MCP)
|
||||
|
||||
## 🛠️ Setup
|
||||
|
||||
1. Clone the OWL repository:
|
||||
```bash
|
||||
git clone https://github.com/camel-ai/owl
|
||||
cd owl
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Add your Qwen API key to the `.env` file:
|
||||
```
|
||||
QWEN_API_KEY=your_api_key_here
|
||||
```
|
||||
|
||||
4. Configure MCP servers in `mcp_sse_config.json`
|
||||
|
||||
5. (Optional) Install Playwright MCP manually:
|
||||
```bash
|
||||
npm install -D @playwright/mcp
|
||||
```
|
||||
Note: This step is optional as the config will auto-install Playwright MCP through npx.
|
||||
|
||||
## 🧩 MCP Servers Included
|
||||
|
||||
This example integrates with two powerful MCP servers:
|
||||
|
||||
### 1. EdgeOne Pages MCP (`edgeone-pages-mcp`)
|
||||
|
||||
EdgeOne Pages MCP is a specialized service that enables:
|
||||
- **Instant HTML Deployment**: Deploy AI-generated HTML content to EdgeOne Pages with a single call
|
||||
- **Public Access URLs**: Generate publicly accessible links for deployed content
|
||||
- **No Setup Required**: Uses an SSE (Server-Sent Events) endpoint, so no local installation is needed
|
||||
|
||||
Configuration in `mcp_sse_config.json`:
|
||||
```json
|
||||
"edgeone-pages-mcp": {
|
||||
"type": "sse",
|
||||
"url": "https://mcp.api-inference.modelscope.cn/sse/fcbc9ff4e9704d"
|
||||
}
|
||||
```
|
||||
|
||||
### 2. Playwright MCP (`playwright`)
|
||||
|
||||
Playwright MCP is a powerful browser automation tool that allows:
|
||||
- **Web Navigation**: Browse websites and interact with web pages
|
||||
- **Screen Capture**: Take screenshots and extract page content
|
||||
- **Element Interaction**: Click, type, and interact with page elements
|
||||
- **Web Scraping**: Extract structured data from web pages
|
||||
|
||||
Configuration in `mcp_sse_config.json`:
|
||||
```json
|
||||
"playwright": {
|
||||
"command": "npx",
|
||||
"args": [
|
||||
"@playwright/mcp@latest"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**Installation Options**:
|
||||
1. **Auto-installation**: The configuration above automatically installs and runs Playwright MCP through `npx`.
|
||||
2. **Manual installation**: If you prefer to install it permanently in your project:
|
||||
```bash
|
||||
npm install -D @playwright/mcp
|
||||
```
|
||||
Then you can update the config to use the local installation:
|
||||
```json
|
||||
"playwright": {
|
||||
"command": "npx",
|
||||
"args": [
|
||||
"@playwright/mcp"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## 🚀 Usage
|
||||
|
||||
Run the script with a task prompt:
|
||||
|
||||
```bash
|
||||
python run_mcp_qwen3.py "Your task description here"
|
||||
```
|
||||
|
||||
If no task is provided, a default task will be used.
|
||||
|
||||
## 📊 Output
|
||||
|
||||
1. **Terminal Output**: Colorful, formatted output showing:
|
||||
- System messages
|
||||
- Task specifications
|
||||
- Agent conversations
|
||||
- Tool calls
|
||||
- Task completion status
|
||||
|
||||
2. **Markdown Logs**: Detailed conversation logs saved to `conversation_logs/` directory
|
||||
|
||||
## 🔧 Customization
|
||||
|
||||
- Modify `mcp_sse_config.json` to add or remove MCP servers
|
||||
- Adjust model parameters in the `construct_society` function
|
||||
- Change the maximum conversation rounds with the `round_limit` parameter
|
||||
|
||||
## 📝 Technical Details
|
||||
|
||||
This implementation extends the standard OWL run_mcp.py script with:
|
||||
|
||||
1. Colorized terminal output using Colorama
|
||||
2. Structured markdown log generation
|
||||
3. Improved error handling and graceful termination
|
||||
4. Enhanced formatting for tool calls and agent messages
|
||||
|
||||
## 🤝 Acknowledgements
|
||||
|
||||
- [CAMEL-AI Organization](https://github.com/camel-ai)
|
||||
- [OWL Framework](https://github.com/camel-ai/owl)
|
||||
- [Model Context Protocol (MCP)](https://modelcontextprotocol.io/introduction)
|
||||
- [Qwen API](https://help.aliyun.com/zh/dashscope/developer-reference/api-details)
|
||||
- [EdgeOne Pages](https://edgeone.cloud.tencent.com/pages)
|
||||
- [Microsoft Playwright](https://github.com/microsoft/playwright-mcp)
|
||||
Loading…
x
Reference in New Issue
Block a user