chore: first commit

This commit is contained in:
Han Xiao 2025-01-26 17:59:35 +08:00
parent 48230560d3
commit 33179010b7

View File

@ -3,7 +3,8 @@ import dotenv from 'dotenv';
import {ProxyAgent, setGlobalDispatcher} from "undici";
import {readUrl} from "./tools/read";
import {search} from "./tools/search";
// 获取代理URL并设置代理
// Proxy setup remains the same
if (process.env.https_proxy) {
try {
const proxyUrl = new URL(process.env.https_proxy).toString();
@ -15,169 +16,210 @@ if (process.env.https_proxy) {
}
dotenv.config();
const schema = {
type: SchemaType.OBJECT,
type ResponseSchema = {
type: SchemaType.OBJECT;
properties: {
action: {
type: SchemaType.STRING,
enum: ["search", "readURL", "answer", "reflect"],
description: "Must match exactly one action type"
},
questionsToAnswer: {
type: SchemaType.ARRAY,
items: {
type: SchemaType.STRING,
description: "each question must be a single line, concise and clear. not composite or compound, less than 20 words.",
},
description: "Only required when choosing 'reflect' action, list of most important questions to answer to fill the knowledge gaps.",
maxItems: 2
},
searchKeywords: {
type: SchemaType.ARRAY,
items: {
type: SchemaType.STRING
},
description: "Only required when choosing 'search' action, must be an array of keywords",
maxItems: 3
},
type: SchemaType.STRING;
enum: string[];
description: string;
};
searchQuery: {
type: SchemaType.STRING;
description: string;
};
URLTargets: {
type: SchemaType.ARRAY,
type: SchemaType.ARRAY;
items: {
type: SchemaType.STRING
},
description: "Only required when choosing 'readURL' action, must be an array of URLs"
},
type: SchemaType.STRING;
};
description: string;
};
answer: {
type: SchemaType.STRING,
description: "Only required when choosing 'answer' action, must be the final answer in natural language"
},
type: SchemaType.STRING;
description: string;
};
references: {
type: SchemaType.ARRAY,
type: SchemaType.ARRAY;
items: {
type: SchemaType.OBJECT,
type: SchemaType.OBJECT;
properties: {
title: {
type: SchemaType.STRING,
description: "Title of the document; must be directly from the context"
},
type: SchemaType.STRING;
description: string;
};
url: {
type: SchemaType.STRING,
description: "URL of the document; must be directly from the context"
}
},
required: ["title", "url"]
},
description: "Only required when choosing 'answer' action, must be an array of references"
},
type: SchemaType.STRING;
description: string;
};
};
required: string[];
};
minItems: number;
description: string;
};
reasoning: {
type: SchemaType.STRING,
description: "Explain why choose this action?"
},
type: SchemaType.STRING;
description: string;
};
confidence: {
type: SchemaType.NUMBER,
minimum: 0.0,
maximum: 1.0,
description: "Represents the confidence level of in answering the question BEFORE taking the action. Must be a float between 0.0 and 1.0",
}
},
required: ["action", "reasoning", "confidence"],
type: SchemaType.NUMBER;
minimum: number;
maximum: number;
description: string;
};
questionsToAnswer?: {
type: SchemaType.ARRAY;
items: {
type: SchemaType.STRING;
description: string;
};
description: string;
maxItems: number;
};
};
required: string[];
};
const apiKey = process.env.GEMINI_API_KEY as string;
const jinaToken = process.env.JINA_API_KEY as string;
if (!apiKey) {
throw new Error("GEMINI_API_KEY not found");
}
if (!jinaToken) {
throw new Error("JINA_API_KEY not found");
function getSchema(allowReflect: boolean): ResponseSchema {
return {
type: SchemaType.OBJECT,
properties: {
action: {
type: SchemaType.STRING,
enum: allowReflect ? ["search", "readURL", "answer", "reflect"] : ["search", "readURL", "answer"],
description: "Must match exactly one action type"
},
questionsToAnswer: allowReflect ? {
type: SchemaType.ARRAY,
items: {
type: SchemaType.STRING,
description: "each question must be a single line, concise and clear. not composite or compound, less than 20 words.",
},
description: "Only required when choosing 'reflect' action, list of most important questions to answer to fill the knowledge gaps.",
maxItems: 2
} : undefined,
searchQuery: {
type: SchemaType.STRING,
description: "Only required when choosing 'search' action, must be a short, keyword-based query that BM25, tf-idf based search engines can understand.",
},
URLTargets: {
type: SchemaType.ARRAY,
items: {
type: SchemaType.STRING
},
description: "Only required when choosing 'readURL' action, must be an array of URLs"
},
answer: {
type: SchemaType.STRING,
description: "Only required when choosing 'answer' action, must be the final answer in natural language"
},
references: {
type: SchemaType.ARRAY,
items: {
type: SchemaType.OBJECT,
properties: {
title: {
type: SchemaType.STRING,
description: "Title of the document; must be directly from the context",
},
url: {
type: SchemaType.STRING,
description: "URL of the document; must be directly from the context"
}
},
required: ["title", "url"]
},
minItems: 1,
description: "Only required when choosing 'answer' action, must be an array of references"
},
reasoning: {
type: SchemaType.STRING,
description: "Explain why choose this action?"
},
confidence: {
type: SchemaType.NUMBER,
minimum: 0.0,
maximum: 1.0,
description: "Represents the confidence level of in answering the question BEFORE taking the action. Must be a float between 0.0 and 1.0",
}
},
required: ["action", "reasoning", "confidence"],
};
}
const modelName = 'gemini-1.5-flash';
const genAI = new GoogleGenerativeAI(apiKey);
const model = genAI.getGenerativeModel({
model: modelName,
generationConfig: {
temperature: 0.7,
responseMimeType: "application/json",
responseSchema: schema
}
});
function getPrompt(question: string, context?: string, allowReflect: boolean = false) {
const contextIntro = context ?
`\nYour current context contains these previous actions:\n\n ${context}\n`
: '';
function getPrompt(question: string, context?: string, allowReflect:boolean = false) {
let contextIntro = ``;
if (!!context) {
contextIntro = `
You have the following actions records in your context:
${context}
`;
}
let reflectAction = '';
if (allowReflect) {
reflectAction = `
If you are not 100% confident in your answer, then identify the gaps in your knowledge with "reflect" action:
**reflect**:
- Challenge existing knowledge with what-if or divide-and-conquer thinking.
- Reflect on the gaps in your knowledge and ask for most important questions to fill those gaps.
- You use this action when you feel like you need to first answer those questions before proceeding with the current one.
- Should not similar to the original question or existing questionsToAnswer in the context.
- Each question must be concise and clear less than 20 words and not composite or compound.
`
}
return `You are an AI research analyst capable of multi-step reasoning.
${contextIntro}
Based on the previous actions and the knowledge in your training data, you must answer the following question with 100% confidence:
let actionsDescription = `
Using your training data and prior context, answer the following question with absolute certainty:
${question}
${reflectAction}
Or you can take one of the following actions:
When uncertain or needing additional information, select one of these actions:
**search**:
- Search external real-world information via a public search engine.
- The search engine works best with short, keyword-based queries.
- You use this action when you need more world knowledge or up to date information that is not covered in your training data or cut-off knowledge base.
- Query external sources using a public search engine
- Optimize for concise, keyword-based searches
- Use for recent information (post-training data) or missing domain knowledge
**readURL**:
- Provide a specific URL to fetch and read its content in detail.
- Any URL must come from the current context.
- You use this action when you feel like that particular URL might have the information you need to answer the question.
- Access content from specific URLs found in current context
- Requires existing URLs from previous actions
- Use when confident a contextual URL contains needed information
**answer**:
- Provide your answer to the user, **only** if you are completely sure.
- Provide final response only when 100% certain
- Responses must be definitive (no ambiguity, uncertainty, or disclaimers)
${allowReflect ? `- If doubts remain, use "reflect" instead` : ''}`;
When you decide on your action, respond **only** in valid JSON format according to the schema below.
if (allowReflect) {
actionsDescription += `\n\n**reflect**:
- Perform critical analysis through hypothetical scenarios or systematic breakdowns
- Identify knowledge gaps and formulate essential clarifying questions
- Questions must be:
- Original (not variations of existing questions)
- Focused on single concepts
- Under 20 words
- Non-compound/non-complex`;
}
**Important**:
- Do not include any extra keys.
- Do not include explanatory text, markdown formatting, or reasoning in the final output.
- Output exactly one JSON object in your response.
`;
return `You are an advanced AI research analyst specializing in multi-step reasoning.${contextIntro}${actionsDescription}
Respond exclusively in valid JSON format matching exact JSON schema.
Critical Requirements:
- Include ONLY ONE action type
- Never add unsupported keys
- Exclude all non-JSON text, markdown, or explanations
- Maintain strict JSON syntax`;
}
async function getResponse(question: string) {
let tokenBudget = 30000000;
let totalTokens = 0;
let context = ''; // global context to store all the actions records
let context = '';
let step = 0;
let gaps: string[] = [];
let gaps: string[] = [question]; // All questions to be answered including the orginal question
while (totalTokens < tokenBudget) {
const allowReflect = gaps.length === 0;
console.log('Gaps:', gaps)
const allowReflect = gaps.length <= 1;
const currentQuestion = gaps.length > 0 ? gaps.shift()! : question;
const prompt = getPrompt(currentQuestion, context, allowReflect);
console.log('Prompt length:', prompt.length);
console.log('Context:', context.length);
console.log('Gaps:', gaps.length);
console.log('Prompt:', prompt.length)
const model = genAI.getGenerativeModel({
model: modelName,
generationConfig: {
temperature: 0.7,
responseMimeType: "application/json",
responseSchema: getSchema(allowReflect)
}
});
const result = await model.generateContent(prompt);
const response = await result.response;
const usage = response.usageMetadata;
@ -191,37 +233,36 @@ async function getResponse(question: string) {
if (action.action === 'answer') {
if (currentQuestion === question) {
return action; // Exit only for original question's answer not the gap question
return action;
} else {
const contextRecord = JSON.stringify({
context = `${context}\n${JSON.stringify({
step,
...action,
question: currentQuestion
});
context = `${context}\n${contextRecord}`;
})}`;
}
}
if (action.action === 'reflect' && action.questionsToAnswer) {
gaps.push(...action.questionsToAnswer);
const contextRecord = JSON.stringify({
gaps.push(question); // always keep the original question in the gaps
context = `${context}\n${JSON.stringify({
step,
...action,
question: currentQuestion
});
context = `${context}\n${contextRecord}`;
})}`;
}
// Rest of the action handling remains the same
try {
if (action.action === 'search' && action.searchKeywords) {
const results = await search(action.searchKeywords.join(' '), jinaToken);
const contextRecord = JSON.stringify({
if (action.action === 'search' && action.searchQuery) {
const results = await search(action.searchQuery, jinaToken);
context = `${context}\n${JSON.stringify({
step,
...action,
question: currentQuestion,
result: results.data
});
context = `${context}\n${contextRecord}`;
})}`;
totalTokens += results.data.reduce((sum, r) => sum + r.usage.tokens, 0);
} else if (action.action === 'readURL' && action.URLTargets?.length) {
const urlResults = await Promise.all(
@ -231,25 +272,13 @@ async function getResponse(question: string) {
})
);
const contextRecord = JSON.stringify({
context = `${context}\n${JSON.stringify({
step,
...action,
question: currentQuestion,
result: urlResults
});
context = `${context}\n${contextRecord}`;
})}`;
totalTokens += urlResults.reduce((sum, r) => sum + r.result.data.usage.tokens, 0);
} else if (action.action === 'rewrite' && action.rewriteQuery) {
// Immediately search with the new rewriteQuery
const results = await search(action.rewriteQuery, jinaToken);
const contextRecord = JSON.stringify({
step,
...action,
question: currentQuestion,
result: results.data
});
context = `${context}\n${contextRecord}`;
totalTokens += results.data.reduce((sum, r) => sum + r.usage.tokens, 0);
}
} catch (error) {
console.error('Error fetching data:', error);
@ -257,6 +286,13 @@ async function getResponse(question: string) {
}
}
const apiKey = process.env.GEMINI_API_KEY as string;
const jinaToken = process.env.JINA_API_KEY as string;
if (!apiKey) throw new Error("GEMINI_API_KEY not found");
if (!jinaToken) throw new Error("JINA_API_KEY not found");
const modelName = 'gemini-1.5-flash';
const genAI = new GoogleGenerativeAI(apiKey);
const question = process.argv[2] || "";
getResponse(question);
getResponse(question);