OpenHands/evaluation/toolqa/run_infer.py
jigsawlabs-student fa6c12473e
#2220, integrated aider style linting, currently passes related o… (#2489)
* WIP for integrate aider linter, see OpenDevin#2220

Updated aider linter to:
    * Always return text and line numbers
    * Moved extract line number more consistently
    * Changed pylint to stop after first linter detects errors
Updated agentskills
    * To get back a LintResult object and then use lines and text for error message and related line number
    * Moved code for extracting line number to aider linter
Tests:
* Added additional unit tests for aider to test for
* Return values from lint failures
* Confirm linter works for non-configured languages like Ruby

* move to agent_skills, fixes not seeing skills error

* format/lint to new code, fix failing tests, remove unused code from aider linter

* small changes (remove litellm, fix readme typo)

* fix failing sandbox test

* keep, change dumping of metadata

* WIP for integrate aider linter, see OpenDevin#2220

Updated aider linter to:
    * Always return text and line numbers
    * Moved extract line number more consistently
    * Changed pylint to stop after first linter detects errors
Updated agentskills
    * To get back a LintResult object and then use lines and text for error message and related line number
    * Moved code for extracting line number to aider linter
Tests:
* Added additional unit tests for aider to test for
* Return values from lint failures
* Confirm linter works for non-configured languages like Ruby

* move to agent_skills, fixes not seeing skills error

* format/lint to new code, fix failing tests, remove unused code from aider linter

* remove duplication of tree-sitter, grep-ast and update poetry.lock

* revert to main branch poetry.lock version

* only update necessary package

* fix jupyter kernel wrong interpreter issue (only for swebench)

* fix failing lint tests

* update syntax error checks for flake

* update poetry lock file

* update poetry.lock file, which update content-hash

* add grep ast

* remove extra stuff caused by merge

* update pyproject

* remove extra pytest fixture, ruff styling fixes

* lint files

* update poetry.lock file

---------

Co-authored-by: Jeff Katzy <jeffreyerickatz@gmail.com>
Co-authored-by: yufansong <yufan@risingwave-labs.com>
Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>
Co-authored-by: tobitege <tobitege@gmx.de>
2024-07-19 21:58:54 +08:00

195 lines
7.3 KiB
Python

import asyncio
import logging
import os
import pathlib
from typing import Any
import pandas as pd
from evaluation.utils.shared import (
EvalMetadata,
codeact_user_response,
make_metadata,
monologue_user_response,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import config, get_llm_config_arg, get_parser
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.llm.llm import LLM
from .utils import download_data, download_tools, encode_question, eval_answer, get_data
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
'MonologueAgent': monologue_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config))
# create process-specific workspace dir
# we will create a workspace directory for EACH process
# so that different agent don't interfere with each other.
workspace_mount_path = config.workspace_mount_path
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
eval_output_dir = metadata.eval_output_dir
qid = instance.qid
question = instance.question
answer = instance.answer
if reset_logger:
# Set up logger
log_file = os.path.join(eval_output_dir, 'logs', f'instance_{qid}.log')
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {qid}.\nHint: run "tail -f {log_file}" to see live logs in a separate shell'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
# Prepare instruction
instruction = encode_question(question)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
agent.__class__.__name__
],
sid=qid,
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
model_answer_raw = state.history.get_last_agent_message()
# attempt to parse model_answer
correct = eval_answer(str(model_answer_raw), str(answer))
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'qid': qid,
'text': model_answer_raw,
'correct': correct,
'answer_id': 'None',
'model_id': metadata.model_name,
'metadata': metadata,
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
}
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
default='flight',
)
parser.add_argument(
'--hardness',
type=str,
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
default='easy',
)
parser.add_argument(
'--wolfram_alpha_appid',
type=str,
help='wolfram alpha appid to use for wolfram alpha related tests',
default='YOUR_WOLFRAMALPHA_APPID',
)
args, _ = parser.parse_known_args()
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
dataset = ''
hardness = ''
dataset_choices = [
'agenda',
'airbnb',
'coffee',
'dblp',
'flight',
'gsm8k',
'scirex',
'yelp',
'genda',
]
if args.dataset not in dataset_choices:
raise ValueError(
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
)
if args.hardness not in ['easy', 'hard']:
raise ValueError('Please choose from easy and hard for hardness.')
# workspace_mount_path = os.path.join(config.workspace_mount_path, '_eval_workspace')
workspace_mount_path = config.workspace_mount_path
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
toolqa_test = pd.DataFrame(get_data(dataset, hardness))
toolqa_data_path = download_data(workspace_mount_path)
toolqa_tool_path = download_tools(workspace_mount_path, args.wolfram_alpha_appid)
id_column = 'qid'
metadata = make_metadata(
llm_config,
f'toolqa-{args.dataset}-{args.hardness}',
args.agent_cls,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit, id_column)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
id_column,
)