mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* WIP for integrate aider linter, see OpenDevin#2220
Updated aider linter to:
* Always return text and line numbers
* Moved extract line number more consistently
* Changed pylint to stop after first linter detects errors
Updated agentskills
* To get back a LintResult object and then use lines and text for error message and related line number
* Moved code for extracting line number to aider linter
Tests:
* Added additional unit tests for aider to test for
* Return values from lint failures
* Confirm linter works for non-configured languages like Ruby
* move to agent_skills, fixes not seeing skills error
* format/lint to new code, fix failing tests, remove unused code from aider linter
* small changes (remove litellm, fix readme typo)
* fix failing sandbox test
* keep, change dumping of metadata
* WIP for integrate aider linter, see OpenDevin#2220
Updated aider linter to:
* Always return text and line numbers
* Moved extract line number more consistently
* Changed pylint to stop after first linter detects errors
Updated agentskills
* To get back a LintResult object and then use lines and text for error message and related line number
* Moved code for extracting line number to aider linter
Tests:
* Added additional unit tests for aider to test for
* Return values from lint failures
* Confirm linter works for non-configured languages like Ruby
* move to agent_skills, fixes not seeing skills error
* format/lint to new code, fix failing tests, remove unused code from aider linter
* remove duplication of tree-sitter, grep-ast and update poetry.lock
* revert to main branch poetry.lock version
* only update necessary package
* fix jupyter kernel wrong interpreter issue (only for swebench)
* fix failing lint tests
* update syntax error checks for flake
* update poetry lock file
* update poetry.lock file, which update content-hash
* add grep ast
* remove extra stuff caused by merge
* update pyproject
* remove extra pytest fixture, ruff styling fixes
* lint files
* update poetry.lock file
---------
Co-authored-by: Jeff Katzy <jeffreyerickatz@gmail.com>
Co-authored-by: yufansong <yufan@risingwave-labs.com>
Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>
Co-authored-by: tobitege <tobitege@gmx.de>
195 lines
7.3 KiB
Python
195 lines
7.3 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
import pathlib
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
monologue_user_response,
|
|
prepare_dataset,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.agent import Agent
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import config, get_llm_config_arg, get_parser
|
|
from opendevin.core.logger import get_console_handler
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import run_agent_controller
|
|
from opendevin.llm.llm import LLM
|
|
|
|
from .utils import download_data, download_tools, encode_question, eval_answer, get_data
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
'MonologueAgent': monologue_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the request, please run the following command: <execute_bash> exit </execute_bash>.\n'
|
|
}
|
|
|
|
|
|
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
|
|
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config))
|
|
# create process-specific workspace dir
|
|
# we will create a workspace directory for EACH process
|
|
# so that different agent don't interfere with each other.
|
|
workspace_mount_path = config.workspace_mount_path
|
|
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
eval_output_dir = metadata.eval_output_dir
|
|
qid = instance.qid
|
|
question = instance.question
|
|
answer = instance.answer
|
|
if reset_logger:
|
|
# Set up logger
|
|
log_file = os.path.join(eval_output_dir, 'logs', f'instance_{qid}.log')
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
# add back the console handler to print ONE line
|
|
logger.addHandler(get_console_handler())
|
|
logger.info(
|
|
f'Starting evaluation for instance {qid}.\nHint: run "tail -f {log_file}" to see live logs in a separate shell'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
file_handler = logging.FileHandler(log_file)
|
|
file_handler.setFormatter(
|
|
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
)
|
|
logger.addHandler(file_handler)
|
|
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
|
|
|
|
# Prepare instruction
|
|
instruction = encode_question(question)
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
|
|
# logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
state: State | None = asyncio.run(
|
|
run_agent_controller(
|
|
agent,
|
|
instruction,
|
|
max_iterations=metadata.max_iterations,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
agent.__class__.__name__
|
|
],
|
|
sid=qid,
|
|
)
|
|
)
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
# retrieve the last message from the agent
|
|
model_answer_raw = state.history.get_last_agent_message()
|
|
|
|
# attempt to parse model_answer
|
|
correct = eval_answer(str(model_answer_raw), str(answer))
|
|
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
# Save the output
|
|
output = {
|
|
'qid': qid,
|
|
'text': model_answer_raw,
|
|
'correct': correct,
|
|
'answer_id': 'None',
|
|
'model_id': metadata.model_name,
|
|
'metadata': metadata,
|
|
'history': histories,
|
|
'metrics': metrics,
|
|
'error': state.last_error if state and state.last_error else None,
|
|
}
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--dataset',
|
|
type=str,
|
|
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
|
|
default='flight',
|
|
)
|
|
parser.add_argument(
|
|
'--hardness',
|
|
type=str,
|
|
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
|
|
default='easy',
|
|
)
|
|
parser.add_argument(
|
|
'--wolfram_alpha_appid',
|
|
type=str,
|
|
help='wolfram alpha appid to use for wolfram alpha related tests',
|
|
default='YOUR_WOLFRAMALPHA_APPID',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
|
|
logger.info(f'Config for evaluation: {config}')
|
|
|
|
dataset = ''
|
|
hardness = ''
|
|
dataset_choices = [
|
|
'agenda',
|
|
'airbnb',
|
|
'coffee',
|
|
'dblp',
|
|
'flight',
|
|
'gsm8k',
|
|
'scirex',
|
|
'yelp',
|
|
'genda',
|
|
]
|
|
if args.dataset not in dataset_choices:
|
|
raise ValueError(
|
|
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
|
|
)
|
|
if args.hardness not in ['easy', 'hard']:
|
|
raise ValueError('Please choose from easy and hard for hardness.')
|
|
|
|
# workspace_mount_path = os.path.join(config.workspace_mount_path, '_eval_workspace')
|
|
workspace_mount_path = config.workspace_mount_path
|
|
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
|
|
toolqa_test = pd.DataFrame(get_data(dataset, hardness))
|
|
toolqa_data_path = download_data(workspace_mount_path)
|
|
toolqa_tool_path = download_tools(workspace_mount_path, args.wolfram_alpha_appid)
|
|
|
|
id_column = 'qid'
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'toolqa-{args.dataset}-{args.hardness}',
|
|
args.agent_cls,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit, id_column)
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
id_column,
|
|
)
|