Graham Neubig f9088766e8
Allow setting of runtime container image (#3573)
* Add runtime container image setting

* Fix typo in test

* Fix sandbox base container image

* Update variables

* Update to base_container_image

* Update tests/unit/test_config.py

Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>

* Fixed eval

* Fixed container_image

* Fix typo

---------

Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>
2024-08-25 23:05:41 +00:00

234 lines
7.2 KiB
Python

import asyncio
import json
import os
from typing import Any
import browsergym.webarena # noqa F401 register webarena tasks as gym environments
import gymnasium as gym
import pandas as pd
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
BrowseInteractiveAction,
CmdRunAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.browser.browser_env import (
BROWSER_EVAL_GET_GOAL_ACTION,
BROWSER_EVAL_GET_REWARDS_ACTION,
)
from openhands.runtime.runtime import Runtime
SUPPORTED_AGENT_CLS = {'BrowsingAgent'}
def get_config(
metadata: EvalMetadata,
env_id: str,
) -> AppConfig:
base_url = os.environ.get('WEBARENA_BASE_URL', None)
openai_api_key = os.environ.get('OPENAI_API_KEY', None)
assert base_url is not None, 'WEBARENA_BASE_URL must be set'
assert openai_api_key is not None, 'OPENAI_API_KEY must be set'
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
browsergym_eval_env=env_id,
runtime_startup_env_vars={
'BASE_URL': base_url,
'OPENAI_API_KEY': openai_api_key,
'SHOPPING': f'{base_url}:7770/',
'SHOPPING_ADMIN': f'{base_url}:7780/admin',
'REDDIT': f'{base_url}:9999',
'GITLAB': f'{base_url}:8023',
'WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing',
'MAP': f'{base_url}:3000',
'HOMEPAGE': f'{base_url}:4399',
},
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def initialize_runtime(
runtime: Runtime,
) -> dict:
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
goal = obs.content
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
return goal
async def complete_runtime(
runtime: Runtime,
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return {
'rewards': json.loads(obs.content),
}
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
env_id = instance.instance_id
config = get_config(metadata, env_id)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, env_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {env_id}.')
runtime = await create_runtime(config, sid=env_id)
task_str = await initialize_runtime(runtime)
state: State | None = await run_controller(
config=config,
task_str=task_str,
runtime=runtime,
)
# ======= Attempt to evaluate the agent's environment impact =======
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# Instruction is the first message from the USER
instruction = ''
for event in state.history.get_events():
if isinstance(event, MessageAction):
instruction = event.content
break
return_val = await complete_runtime(runtime)
logger.info(f'Return value from complete_runtime: {return_val}')
reward = max(return_val['rewards'])
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = EvalOutput(
instance_id=env_id,
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'reward': reward,
},
)
return output
if __name__ == '__main__':
args = parse_arguments()
dataset = pd.DataFrame(
{
'instance_id': [
id
for id in gym.envs.registry.keys()
if id.startswith('browsergym/webarena')
]
}
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
args.dataset_name,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)
)