Graham Neubig f9088766e8
Allow setting of runtime container image (#3573)
* Add runtime container image setting

* Fix typo in test

* Fix sandbox base container image

* Update variables

* Update to base_container_image

* Update tests/unit/test_config.py

Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>

* Fixed eval

* Fixed container_image

* Fix typo

---------

Co-authored-by: Xingyao Wang <xingyao6@illinois.edu>
2024-08-25 23:05:41 +00:00

348 lines
13 KiB
Python

import asyncio
import functools
import json
import os
import tempfile
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.biocoder.utils import BiocoderData
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.runtime import Runtime
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': functools.partial(
codeact_user_response, encapsulate_solution=True, try_parse=None
),
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n'
}
FILE_EXT_MAP = {
'python': 'py',
'java': 'java',
'c': 'c',
'cpp': 'cpp',
'javascript': 'js',
'typescript': 'ts',
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
BIOCODER_BENCH_CONTAINER_IMAGE = 'public.ecr.aws/i5g0m1f6/eval_biocoder:v1.0'
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image=BIOCODER_BENCH_CONTAINER_IMAGE,
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config
async def initialize_runtime(
runtime: Runtime,
instance: BiocoderData, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
file_ext = FILE_EXT_MAP[instance.language.lower()]
action = CmdRunAction(command='mkdir -p /workspace && mkdir -p /testing_files')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
with tempfile.TemporaryDirectory() as tmpdir:
context_path = os.path.join(tmpdir, 'context.' + file_ext)
with open(context_path, 'w') as f:
f.write(instance.contextCode)
await runtime.copy_to(context_path, '/testing_files')
golden_path = os.path.join(tmpdir, 'golden.' + file_ext)
with open(golden_path, 'w') as f:
f.write(instance.goldenCode)
await runtime.copy_to(golden_path, '/testing_files')
testcase_json = {
'test_case_id': instance.test_case_id,
'num_cases': 1000,
'language': instance.language.lower(),
}
testcase_path = os.path.join(tmpdir, 'testcase_biocoder.json')
with open(testcase_path, 'w') as f:
f.write(json.dumps(testcase_json, indent=4))
await runtime.copy_to(testcase_path, '/testing_files')
# setup paths
remove_code_script = os.path.join(
os.path.dirname(__file__), 'scripts', 'setup', 'remove_code.py'
)
await runtime.copy_to(remove_code_script, '/testing_files')
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
# download repository archive
repository_url = f"https://biocoder.lilbillbiscuit.com/repos/{instance.repository.split('/')[1]}.zip"
action = CmdRunAction(command='wget -O repo.zip ' + repository_url)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0, f'Failed to download the repository: {obs.content}'
# unzip the repository
action = CmdRunAction(command='unzip -o -q repo.zip && rm repo.zip')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0, f'Failed to unzip the repository: {obs.content}'
# chmod 777
action = CmdRunAction(command='chmod -R 777 /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0, f'Failed to chmod the files: {obs.content}'
# remove code for evaluation instance
target_filepath = os.path.join(
'/workspace', instance.repository.split('/')[1], instance.filePath
)
line_start = instance.lineStart
line_end = instance.lineEnd
language = instance.language.lower()
action = CmdRunAction(
command=f'python3 /testing_files/remove_code.py --target_filepath {target_filepath} --line_start {line_start} --line_end {line_end} --language {language}'
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0, f'Failed to remove the code: {obs.content}'
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
async def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
test_result = {'result': {}, 'metadata': {}}
copy_changed_code_script = os.path.join(
os.path.dirname(__file__), 'scripts', 'setup', 'copy_changed_code.py'
)
await runtime.copy_to(copy_changed_code_script, '/testing_files')
file_ext = FILE_EXT_MAP[instance.language.lower()]
target_filepath = os.path.join(
'/workspace', instance.repository.split('/')[1], instance.filePath
)
generated_path = os.path.join('/testing_files', 'generated.' + file_ext)
action = CmdRunAction(
command=f'python3 /testing_files/copy_changed_code.py --target_filepath {target_filepath} --generated_code_filepath {generated_path} --line_start {instance.lineStart} --include_signature'
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
if obs.exit_code == 0:
test_result['metadata']['1_copy_change_success'] = True
action = CmdRunAction(command=f'cat {generated_path}', keep_prompt=False)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
code = obs.content
test_result['metadata']['1_copy_change_code'] = code
else:
test_result['metadata']['1_copy_change_success'] = False
test_result['metadata']['1_copy_change_code'] = None
action = CmdRunAction(command='cd /testing_files')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(
command='/home/openhands/mambaforge/bin/mamba run -n test python3 /testing/start_test_openhands.py'
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
action = CmdRunAction(
command='cat /testing_files/results_biocoder.json', keep_prompt=False
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = await runtime.run_action(action)
if obs.exit_code == 0:
test_result['metadata']['2_run_test_success'] = True
test_result['metadata']['2_run_test_result'] = str(obs.content)
json_obj = json.loads(obs.content)
test_result['result'] = json_obj['result']
else:
test_result['metadata']['2_run_test_success'] = False
test_result['metadata']['2_run_test_result'] = str(obs.content)
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return test_result
async def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
instance = BiocoderData(**instance)
print(instance)
instance_id = f'{instance.repository}__{instance.instance_id[:10]}'
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
# Prepare instruction
instruction = (
f'Please complete the function "{instance.signature}" in the file /workspace/{instance.repository.split("/")[1]}/{instance.filePath}.\n'
f'The environment has been set up for you to start working. You may assume all necessary tools are installed.\n'
f'To complete the task, you must directly modify the file and fill in the function, keeping in mind that the function signature is on line {instance.lineStart-1}\n\n'
f'The function should do the following:\n'
f'{instance.promptSummaryOnly}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'You should NOT modify any other files other than the file intended. This means that you should NOT write any test cases.\n'
'You may need context from other files in the repository to complete this task.'
'Do NOT add any import statements or change anything else other than the writing the function body.\n'
'You do not need to run the code to check if it works. \n'
'Make sure to include proper formatting in Java and Python, including correct braces and/or indentation.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
# use a session id for concurrent evaluation
sid = instance.instance_id.replace('/', '__')
runtime = await create_runtime(config, sid=sid)
await initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = await run_controller(
config=config,
task_str=instruction,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
)
if state is None:
raise ValueError('State should not be None.')
test_result = await complete_runtime(runtime, instance)
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
test_result['generated'] = test_result['metadata']['1_copy_change_code']
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
args = parse_arguments()
dataset = load_dataset('lilbillbiscuit/biocoder_public')
biocoder_tests = dataset['train'].to_pandas()
biocoder_tests['instance_id'] = biocoder_tests['test_case_id']
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'biocoder',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(biocoder_tests, output_file, args.eval_n_limit)
asyncio.run(
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)
)