mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* Add integration test framework with mock llm * Fix MonologueAgent and PlannerAgent tests * Remove adhoc logging * Use existing logs * Fix SWEAgent and PlannerAgent * Check-in test log files * conftest: look up under test name folder only * Add docstring to conftest * Finish dev doc * Avoid non-determinism * Remove dependency on llm embedding model * Init embedding model only for MonologueAgent * Add adhoc fix for sandbox discrepancy * Test ssh and exec sandboxes * CI: fix missing sandbox type * conftest: Remove hack * Reword comment for TODO
154 lines
5.8 KiB
Python
154 lines
5.8 KiB
Python
import llama_index.embeddings.openai.base as llama_openai
|
|
from threading import Thread
|
|
|
|
import chromadb
|
|
from llama_index.core import Document
|
|
from llama_index.core.retrievers import VectorIndexRetriever
|
|
from llama_index.core import VectorStoreIndex
|
|
from llama_index.vector_stores.chroma import ChromaVectorStore
|
|
from tenacity import retry, retry_if_exception_type, stop_after_attempt, wait_random_exponential
|
|
from openai._exceptions import APIConnectionError, RateLimitError, InternalServerError
|
|
|
|
from opendevin import config
|
|
from opendevin.logger import opendevin_logger as logger
|
|
from . import json
|
|
|
|
num_retries = config.get('LLM_NUM_RETRIES')
|
|
retry_min_wait = config.get('LLM_RETRY_MIN_WAIT')
|
|
retry_max_wait = config.get('LLM_RETRY_MAX_WAIT')
|
|
|
|
# llama-index includes a retry decorator around openai.get_embeddings() function
|
|
# it is initialized with hard-coded values and errors
|
|
# this non-customizable behavior is creating issues when it's retrying faster than providers' rate limits
|
|
# this block attempts to banish it and replace it with our decorator, to allow users to set their own limits
|
|
|
|
if hasattr(llama_openai.get_embeddings, '__wrapped__'):
|
|
original_get_embeddings = llama_openai.get_embeddings.__wrapped__
|
|
else:
|
|
logger.warning('Cannot set custom retry limits.') # warn
|
|
num_retries = 1
|
|
original_get_embeddings = llama_openai.get_embeddings
|
|
|
|
|
|
def attempt_on_error(retry_state):
|
|
logger.error(f'{retry_state.outcome.exception()}. Attempt #{retry_state.attempt_number} | You can customize these settings in the configuration.', exc_info=False)
|
|
return True
|
|
|
|
|
|
@retry(reraise=True,
|
|
stop=stop_after_attempt(num_retries),
|
|
wait=wait_random_exponential(min=retry_min_wait, max=retry_max_wait),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, InternalServerError)),
|
|
after=attempt_on_error)
|
|
def wrapper_get_embeddings(*args, **kwargs):
|
|
return original_get_embeddings(*args, **kwargs)
|
|
|
|
|
|
llama_openai.get_embeddings = wrapper_get_embeddings
|
|
|
|
embedding_strategy = config.get('LLM_EMBEDDING_MODEL')
|
|
|
|
# TODO: More embeddings: https://docs.llamaindex.ai/en/stable/examples/embeddings/OpenAI/
|
|
# There's probably a more programmatic way to do this.
|
|
if embedding_strategy == 'llama2':
|
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
|
embed_model = OllamaEmbedding(
|
|
model_name='llama2',
|
|
base_url=config.get('LLM_BASE_URL', required=True),
|
|
ollama_additional_kwargs={'mirostat': 0},
|
|
)
|
|
elif embedding_strategy == 'openai':
|
|
from llama_index.embeddings.openai import OpenAIEmbedding
|
|
embed_model = OpenAIEmbedding(
|
|
model='text-embedding-ada-002',
|
|
api_key=config.get('LLM_API_KEY', required=True)
|
|
)
|
|
elif embedding_strategy == 'azureopenai':
|
|
# Need to instruct to set these env variables in documentation
|
|
from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
|
|
embed_model = AzureOpenAIEmbedding(
|
|
model='text-embedding-ada-002',
|
|
deployment_name=config.get('LLM_EMBEDDING_DEPLOYMENT_NAME', required=True),
|
|
api_key=config.get('LLM_API_KEY', required=True),
|
|
azure_endpoint=config.get('LLM_BASE_URL', required=True),
|
|
api_version=config.get('LLM_API_VERSION', required=True),
|
|
)
|
|
elif (embedding_strategy is not None) and (embedding_strategy.lower() == 'none'):
|
|
# TODO: this works but is not elegant enough. The incentive is when
|
|
# monologue agent is not used, there is no reason we need to initialize an
|
|
# embedding model
|
|
embed_model = None
|
|
else:
|
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
embed_model = HuggingFaceEmbedding(
|
|
model_name='BAAI/bge-small-en-v1.5'
|
|
)
|
|
|
|
|
|
class LongTermMemory:
|
|
"""
|
|
Responsible for storing information that the agent can call on later for better insights and context.
|
|
Uses chromadb to store and search through memories.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Initialize the chromadb and set up ChromaVectorStore for later use.
|
|
"""
|
|
db = chromadb.Client()
|
|
self.collection = db.get_or_create_collection(name='memories')
|
|
vector_store = ChromaVectorStore(chroma_collection=self.collection)
|
|
self.index = VectorStoreIndex.from_vector_store(
|
|
vector_store, embed_model=embed_model)
|
|
self.thought_idx = 0
|
|
|
|
def add_event(self, event: dict):
|
|
"""
|
|
Adds a new event to the long term memory with a unique id.
|
|
|
|
Parameters:
|
|
- event (dict): The new event to be added to memory
|
|
"""
|
|
id = ''
|
|
t = ''
|
|
if 'action' in event:
|
|
t = 'action'
|
|
id = event['action']
|
|
elif 'observation' in event:
|
|
t = 'observation'
|
|
id = event['observation']
|
|
doc = Document(
|
|
text=json.dumps(event),
|
|
doc_id=str(self.thought_idx),
|
|
extra_info={
|
|
'type': t,
|
|
'id': id,
|
|
'idx': self.thought_idx,
|
|
},
|
|
)
|
|
self.thought_idx += 1
|
|
logger.debug('Adding %s event to memory: %d', t, self.thought_idx)
|
|
thread = Thread(target=self._add_doc, args=(doc,))
|
|
thread.start() # We add the doc concurrently so we don't have to wait ~500ms for the insert
|
|
|
|
def _add_doc(self, doc):
|
|
self.index.insert(doc)
|
|
|
|
def search(self, query: str, k: int = 10):
|
|
"""
|
|
Searches through the current memory using VectorIndexRetriever
|
|
|
|
Parameters:
|
|
- query (str): A query to match search results to
|
|
- k (int): Number of top results to return
|
|
|
|
Returns:
|
|
- List[str]: List of top k results found in current memory
|
|
"""
|
|
retriever = VectorIndexRetriever(
|
|
index=self.index,
|
|
similarity_top_k=k,
|
|
)
|
|
results = retriever.retrieve(query)
|
|
return [r.get_text() for r in results]
|