OpenHands/agenthub/codeact_agent/codeact_agent.py
Xingyao Wang 9b48f63544
Fix build error (#1339)
* add initial version of swe-agent plugin;

* rename swe cursors

* split setup script into two and create two requirements

* print SWE-agent command documentation

* update swe-agent to default to no custom docs

* update dockerfile with dependency from swe-agent

* make env setup a separate script for .bashrc source

* fix swe-tool plugins;
add missing _split_string

* remove import for temporarily fix (will add back in another pr)
2024-04-24 12:25:18 -04:00

149 lines
5.6 KiB
Python

import re
from typing import List, Mapping
from opendevin.action import (
Action,
AgentEchoAction,
AgentFinishAction,
CmdRunAction,
)
from opendevin.agent import Agent
from opendevin.llm.llm import LLM
from opendevin.observation import (
AgentMessageObservation,
CmdOutputObservation,
)
from opendevin.state import State
from opendevin.sandbox.plugins import PluginRequirement, JupyterRequirement
SYSTEM_MESSAGE = """You are a helpful assistant. You will be provided access (as root) to a bash shell to complete user-provided tasks.
You will be able to execute commands in the bash shell, interact with the file system, install packages, and receive the output of your commands.
DO NOT provide code in ```triple backticks```. Instead, you should execute bash command on behalf of the user by wrapping them with <execute> and </execute>.
For example:
You can list the files in the current directory by executing the following command:
<execute>ls</execute>
You can also install packages using pip:
<execute> pip install numpy </execute>
You can also write a block of code to a file:
<execute>
echo "import math
print(math.pi)" > math.py
</execute>
When you are done, execute the following to close the shell and end the conversation:
<execute>exit</execute>
"""
INVALID_INPUT_MESSAGE = (
"I don't understand your input. \n"
'If you want to execute command, please use <execute> YOUR_COMMAND_HERE </execute>.\n'
'If you already completed the task, please exit the shell by generating: <execute> exit </execute>.'
)
def parse_response(response) -> str:
action = response.choices[0].message.content
if '<execute>' in action and '</execute>' not in action:
action += '</execute>'
return action
class CodeActAgent(Agent):
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
"""
sandbox_plugins: List[PluginRequirement] = [JupyterRequirement()]
def __init__(
self,
llm: LLM,
) -> None:
"""
Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm)
self.messages: List[Mapping[str, str]] = []
def step(self, state: State) -> Action:
"""
Performs one step using the Code Act Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info and background commands
Returns:
- CmdRunAction(command) - command action to run
- AgentEchoAction(content=INVALID_INPUT_MESSAGE) - invalid command output
Raises:
- NotImplementedError - for actions other than CmdOutputObservation or AgentMessageObservation
"""
if len(self.messages) == 0:
assert state.plan.main_goal, 'Expecting instruction to be set'
self.messages = [
{'role': 'system', 'content': SYSTEM_MESSAGE},
{'role': 'user', 'content': state.plan.main_goal},
]
updated_info = state.updated_info
if updated_info:
for prev_action, obs in updated_info:
assert isinstance(
prev_action, (CmdRunAction, AgentEchoAction)
), 'Expecting CmdRunAction or AgentEchoAction for Action'
if isinstance(
obs, AgentMessageObservation
): # warning message from itself
self.messages.append(
{'role': 'user', 'content': obs.content})
elif isinstance(obs, CmdOutputObservation):
content = 'OBSERVATION:\n' + obs.content
content += f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
self.messages.append({'role': 'user', 'content': content})
else:
raise NotImplementedError(
f'Unknown observation type: {obs.__class__}'
)
response = self.llm.completion(
messages=self.messages,
stop=['</execute>'],
temperature=0.0
)
action_str: str = parse_response(response)
state.num_of_chars += sum(len(message['content'])
for message in self.messages) + len(action_str)
self.messages.append({'role': 'assistant', 'content': action_str})
command = re.search(r'<execute>(.*)</execute>', action_str, re.DOTALL)
if command is not None:
# a command was found
command_group = command.group(1)
if command_group.strip() == 'exit':
return AgentFinishAction()
return CmdRunAction(command=command_group)
# # execute the code
# # TODO: does exit_code get loaded into Message?
# exit_code, observation = self.env.execute(command_group)
# self._history.append(Message(Role.ASSISTANT, observation))
else:
# we could provide a error message for the model to continue similar to
# https://github.com/xingyaoww/mint-bench/blob/main/mint/envs/general_env.py#L18-L23
# observation = INVALID_INPUT_MESSAGE
# self._history.append(Message(Role.ASSISTANT, observation))
return AgentEchoAction(
content=INVALID_INPUT_MESSAGE
) # warning message to itself
def search_memory(self, query: str) -> List[str]:
raise NotImplementedError('Implement this abstract method')