mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
278 lines
9.9 KiB
Python
278 lines
9.9 KiB
Python
import asyncio
|
|
from typing import Callable, List, Type
|
|
|
|
|
|
from opendevin import config
|
|
from opendevin.schema.config import ConfigType
|
|
from opendevin.action import (
|
|
Action,
|
|
AgentFinishAction,
|
|
AgentDelegateAction,
|
|
NullAction,
|
|
)
|
|
from opendevin.observation import (
|
|
Observation,
|
|
AgentErrorObservation,
|
|
AgentDelegateObservation,
|
|
NullObservation,
|
|
)
|
|
from opendevin.agent import Agent
|
|
from opendevin.exceptions import AgentMalformedActionError, AgentNoActionError, MaxCharsExceedError, LLMOutputError
|
|
from opendevin.logger import opendevin_logger as logger
|
|
from opendevin.plan import Plan
|
|
from opendevin.state import State
|
|
|
|
from opendevin.action.tasks import TaskStateChangedAction
|
|
from opendevin.schema import TaskState
|
|
from opendevin.controller.action_manager import ActionManager
|
|
|
|
MAX_ITERATIONS = config.get(ConfigType.MAX_ITERATIONS)
|
|
MAX_CHARS = config.get(ConfigType.MAX_CHARS)
|
|
|
|
|
|
class AgentController:
|
|
id: str
|
|
agent: Agent
|
|
max_iterations: int
|
|
action_manager: ActionManager
|
|
callbacks: List[Callable]
|
|
|
|
delegate: 'AgentController | None' = None
|
|
state: State | None = None
|
|
|
|
_task_state: TaskState = TaskState.INIT
|
|
_cur_step: int = 0
|
|
|
|
def __init__(
|
|
self,
|
|
agent: Agent,
|
|
inputs: dict = {},
|
|
sid: str = 'default',
|
|
max_iterations: int = MAX_ITERATIONS,
|
|
max_chars: int = MAX_CHARS,
|
|
callbacks: List[Callable] = [],
|
|
):
|
|
self.id = sid
|
|
self.agent = agent
|
|
self.max_iterations = max_iterations
|
|
self.action_manager = ActionManager(self.id)
|
|
self.max_chars = max_chars
|
|
self.callbacks = callbacks
|
|
# Initialize agent-required plugins for sandbox (if any)
|
|
self.action_manager.init_sandbox_plugins(agent.sandbox_plugins)
|
|
|
|
def update_state_for_step(self, i):
|
|
if self.state is None:
|
|
return
|
|
self.state.iteration = i
|
|
self.state.background_commands_obs = self.action_manager.get_background_obs()
|
|
|
|
def update_state_after_step(self):
|
|
if self.state is None:
|
|
return
|
|
self.state.updated_info = []
|
|
|
|
def add_history(self, action: Action, observation: Observation):
|
|
if self.state is None:
|
|
return
|
|
if not isinstance(action, Action):
|
|
raise TypeError(
|
|
f'action must be an instance of Action, got {type(action).__name__} instead'
|
|
)
|
|
if not isinstance(observation, Observation):
|
|
raise TypeError(
|
|
f'observation must be an instance of Observation, got {type(observation).__name__} instead'
|
|
)
|
|
self.state.history.append((action, observation))
|
|
self.state.updated_info.append((action, observation))
|
|
|
|
async def _run(self):
|
|
if self.state is None:
|
|
return
|
|
|
|
if self._task_state != TaskState.RUNNING:
|
|
raise ValueError('Task is not in running state')
|
|
|
|
for i in range(self._cur_step, self.max_iterations):
|
|
self._cur_step = i
|
|
try:
|
|
finished = await self.step(i)
|
|
if finished:
|
|
self._task_state = TaskState.FINISHED
|
|
except Exception as e:
|
|
logger.error('Error in loop', exc_info=True)
|
|
raise e
|
|
|
|
if self._task_state == TaskState.FINISHED:
|
|
logger.info('Task finished by agent')
|
|
await self.reset_task()
|
|
break
|
|
elif self._task_state == TaskState.STOPPED:
|
|
logger.info('Task stopped by user')
|
|
await self.reset_task()
|
|
break
|
|
elif self._task_state == TaskState.PAUSED:
|
|
logger.info('Task paused')
|
|
self._cur_step = i + 1
|
|
await self.notify_task_state_changed()
|
|
break
|
|
|
|
if self._is_stuck():
|
|
logger.info('Loop detected, stopping task')
|
|
observation = AgentErrorObservation('I got stuck into a loop, the task has stopped.')
|
|
await self._run_callbacks(observation)
|
|
await self.set_task_state_to(TaskState.STOPPED)
|
|
break
|
|
|
|
async def setup_task(self, task: str, inputs: dict = {}):
|
|
"""Sets up the agent controller with a task.
|
|
"""
|
|
self._task_state = TaskState.RUNNING
|
|
await self.notify_task_state_changed()
|
|
self.state = State(Plan(task))
|
|
self.state.inputs = inputs
|
|
|
|
async def start(self, task: str):
|
|
"""Starts the agent controller with a task.
|
|
If task already run before, it will continue from the last step.
|
|
"""
|
|
await self.setup_task(task)
|
|
await self._run()
|
|
|
|
async def resume(self):
|
|
if self.state is None:
|
|
raise ValueError('No task to resume')
|
|
|
|
self._task_state = TaskState.RUNNING
|
|
await self.notify_task_state_changed()
|
|
|
|
await self._run()
|
|
|
|
async def reset_task(self):
|
|
self.state = None
|
|
self._cur_step = 0
|
|
self._task_state = TaskState.INIT
|
|
self.agent.reset()
|
|
await self.notify_task_state_changed()
|
|
|
|
async def set_task_state_to(self, state: TaskState):
|
|
self._task_state = state
|
|
if state == TaskState.STOPPED:
|
|
await self.reset_task()
|
|
logger.info(f'Task state set to {state}')
|
|
|
|
def get_task_state(self):
|
|
"""Returns the current state of the agent task."""
|
|
return self._task_state
|
|
|
|
async def notify_task_state_changed(self):
|
|
await self._run_callbacks(TaskStateChangedAction(self._task_state))
|
|
|
|
async def start_delegate(self, action: AgentDelegateAction):
|
|
AgentCls: Type[Agent] = Agent.get_cls(action.agent)
|
|
agent = AgentCls(llm=self.agent.llm)
|
|
self.delegate = AgentController(
|
|
sid=self.id + '-delegate',
|
|
agent=agent,
|
|
max_iterations=self.max_iterations,
|
|
max_chars=self.max_chars,
|
|
callbacks=self.callbacks,
|
|
)
|
|
task = action.inputs.get('task') or ''
|
|
await self.delegate.setup_task(task, action.inputs)
|
|
|
|
async def step(self, i: int) -> bool:
|
|
if self.state is None:
|
|
raise ValueError('No task to run')
|
|
if self.delegate is not None:
|
|
delegate_done = await self.delegate.step(i)
|
|
if delegate_done:
|
|
outputs = self.delegate.state.outputs if self.delegate.state else {}
|
|
obs: Observation = AgentDelegateObservation(content='', outputs=outputs)
|
|
self.add_history(NullAction(), obs)
|
|
self.delegate = None
|
|
self.delegateAction = None
|
|
return False
|
|
|
|
logger.info(f'STEP {i}', extra={'msg_type': 'STEP'})
|
|
logger.info(self.state.plan.main_goal, extra={'msg_type': 'PLAN'})
|
|
if self.state.num_of_chars > self.max_chars:
|
|
raise MaxCharsExceedError(self.state.num_of_chars, self.max_chars)
|
|
|
|
log_obs = self.action_manager.get_background_obs()
|
|
for obs in log_obs:
|
|
self.add_history(NullAction(), obs)
|
|
await self._run_callbacks(obs)
|
|
logger.info(obs, extra={'msg_type': 'BACKGROUND LOG'})
|
|
|
|
self.update_state_for_step(i)
|
|
action: Action = NullAction()
|
|
observation: Observation = NullObservation('')
|
|
try:
|
|
action = self.agent.step(self.state)
|
|
if action is None:
|
|
raise AgentNoActionError('No action was returned')
|
|
except (AgentMalformedActionError, AgentNoActionError, LLMOutputError) as e:
|
|
observation = AgentErrorObservation(str(e))
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
|
|
self.update_state_after_step()
|
|
|
|
await self._run_callbacks(action)
|
|
|
|
finished = isinstance(action, AgentFinishAction)
|
|
if finished:
|
|
self.state.outputs = action.outputs # type: ignore[attr-defined]
|
|
logger.info(action, extra={'msg_type': 'INFO'})
|
|
return True
|
|
|
|
if isinstance(observation, NullObservation):
|
|
observation = await self.action_manager.run_action(action, self)
|
|
|
|
if not isinstance(observation, NullObservation):
|
|
logger.info(observation, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
self.add_history(action, observation)
|
|
await self._run_callbacks(observation)
|
|
return False
|
|
|
|
async def _run_callbacks(self, event):
|
|
if event is None:
|
|
return
|
|
for callback in self.callbacks:
|
|
idx = self.callbacks.index(callback)
|
|
try:
|
|
await callback(event)
|
|
except Exception as e:
|
|
logger.exception(f'Callback error: {e}, idx: {idx}')
|
|
await asyncio.sleep(
|
|
0.001
|
|
) # Give back control for a tick, so we can await in callbacks
|
|
|
|
def get_state(self):
|
|
return self.state
|
|
|
|
def _is_stuck(self):
|
|
if self.state is None or self.state.history is None or len(self.state.history) < 3:
|
|
return False
|
|
|
|
# if the last three (Action, Observation) tuples are too repetitive
|
|
# the agent got stuck in a loop
|
|
if all(
|
|
[self.state.history[-i][0] == self.state.history[-3][0] for i in range(1, 3)]
|
|
):
|
|
# it repeats same action, give it a chance, but not if:
|
|
if (all
|
|
(isinstance(self.state.history[-i][1], NullObservation) for i in range(1, 4))):
|
|
# same (Action, NullObservation): like 'think' the same thought over and over
|
|
logger.debug('Action, NullObservation loop detected')
|
|
return True
|
|
elif (all
|
|
(isinstance(self.state.history[-i][1], AgentErrorObservation) for i in range(1, 4))):
|
|
# (NullAction, AgentErrorObservation): errors coming from an exception
|
|
# (Action, AgentErrorObservation): the same action getting an error, even if not necessarily the same error
|
|
logger.debug('Action, AgentErrorObservation loop detected')
|
|
return True
|
|
|
|
return False
|