Xingyao Wang c2f46200c0
chore(lint): Apply comprehensive linting and formatting fixes (#10287)
Co-authored-by: openhands <openhands@all-hands.dev>
2025-08-13 21:13:19 +02:00

132 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""GPT performs line level generation prediction and truncates overly long tokens"""
import json
import os
import tiktoken
from openai import OpenAI
max_tokens = 127000 # gpt3.5 is 16ktoken gpt4o is 128k
model_name = ''
os.environ['OPENAI_API_KEY'] = ''
client = OpenAI()
def truncate_text(text, max_tokens):
encoding = tiktoken.get_encoding('cl100k_base')
disallowed_special = ()
tokens = encoding.encode(text, disallowed_special=disallowed_special)
print(len(tokens))
if len(tokens) > max_tokens:
tokens = tokens[:max_tokens]
truncated_text = encoding.decode(tokens)
return truncated_text
def predict(content, model_name):
response = client.chat.completions.create(
model=model_name,
messages=[{'role': 'user', 'content': content}],
frequency_penalty=0.1,
max_tokens=128,
logit_bias=None,
logprobs=None,
n=6,
presence_penalty=0.0,
seed=None,
stop=None,
stream=False,
temperature=0.8,
top_p=0.95,
)
ans_list = []
choices_list = response.choices
for c in choices_list:
content = c.message.content
ans_list.append(content)
final_ans = str(ans_list)
return final_ans
def bulid_prompt(description, old_version, old_code, new_version) -> str:
"""Build prompt
:param version:
:param description:
:param masked_code:
:param options:
:return:
"""
prompt = f"""
You are now a professional Python programming engineer. I will provide you with a code snippet and a description of its functionality,
including the dependencies and versions used in the code. Then, I will provide the same dependencies but with a specified new version.
Your task is to refactor the code using the methods provided by the specified new version and return the refactored code.
Please note that you only need to return the refactored code and enclose it with <start> and <end>:
###Functionality description of the code
{description}
###Dependency and old version
{old_version}
###Old version code
{old_code}
###Dependency and new version
{new_version}
###Refactored new code
"""
return prompt
json_path = '../data/test_data/VersiCode_migration.json'
with open(json_path, 'r', encoding='utf-8') as fr:
lodict = json.load(fr)
data_dict = lodict
data_list = data_dict
for data in data_list:
if 'model_output' in data:
print(
f'the {data_list.index(data) + 1} has already been predicted, skipping this data!'
)
continue
try:
print(f'Predicting {data_list.index(data) + 1} ')
old_version = data['dependency'] + data['old_version'] # package == x.x.x
new_version = data['dependency'] + data['new_version'] # package == x.x.x
description = data['description'] # 功能描述
old_code = data['old_code'] # mask后的代码
instruction = bulid_prompt(description, old_version, old_code, new_version)
truncated_text = truncate_text(instruction, max_tokens)
prediction = predict(truncated_text, model_name)
data['model_output'] = prediction
except Exception as e:
print(f'error{e}')
print('save current data')
save_folder_path = os.path.join(
'../data/result_data/code_migration', model_name
)
if not os.path.exists(save_folder_path):
os.makedirs(save_folder_path)
save_json_path = os.path.join(save_folder_path, json_path.split('/')[-1])
with open(save_json_path, 'w', encoding='utf-8') as fw:
json.dump(data_dict, fw, indent=4, ensure_ascii=False)
break
save_folder_path = os.path.join('../data/result_data/code_migration', model_name)
if not os.path.exists(save_folder_path):
os.makedirs(save_folder_path)
save_json_path = os.path.join(save_folder_path, json_path.split('/')[-1])
with open(save_json_path, 'w', encoding='utf-8') as fw:
json.dump(data_dict, fw, indent=4, ensure_ascii=False)