OpenHands/agenthub/codeact_swe_agent/codeact_swe_agent.py
2024-05-28 23:01:35 +08:00

247 lines
8.8 KiB
Python

import re
from agenthub.codeact_swe_agent.prompt import (
COMMAND_DOCS,
MINIMAL_SYSTEM_PREFIX,
SWE_EXAMPLE,
SYSTEM_SUFFIX,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.events.action import (
Action,
AgentFinishAction,
BrowseInteractiveAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
)
from opendevin.events.observation import (
BrowserOutputObservation,
CmdOutputObservation,
IPythonRunCellObservation,
)
from opendevin.llm.llm import LLM
from opendevin.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
def parse_response(response) -> str:
action = response.choices[0].message.content
for lang in ['bash', 'ipython', 'browse']:
if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
action += f'</execute_{lang}>'
return action
def action_to_str(action: Action) -> str:
if isinstance(action, CmdRunAction):
return f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
elif isinstance(action, IPythonRunCellAction):
return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
elif isinstance(action, BrowseInteractiveAction):
return f'{action.thought}\n<execute_browse>\n{action.browser_actions}\n</execute_browse>'
elif isinstance(action, MessageAction):
return action.content
return ''
def get_action_message(action: Action) -> dict[str, str] | None:
if (
isinstance(action, BrowseInteractiveAction)
or isinstance(action, CmdRunAction)
or isinstance(action, IPythonRunCellAction)
or isinstance(action, MessageAction)
):
return {
'role': 'user' if action.source == 'user' else 'assistant',
'content': action_to_str(action),
}
return None
def get_observation_message(obs) -> dict[str, str] | None:
if isinstance(obs, CmdOutputObservation):
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
content += (
f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
)
return {'role': 'user', 'content': content}
elif isinstance(obs, IPythonRunCellObservation):
content = 'OBSERVATION:\n' + obs.content
# replace base64 images with a placeholder
splitted = content.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
content = '\n'.join(splitted)
content = truncate_observation(content)
return {'role': 'user', 'content': content}
elif isinstance(obs, BrowserOutputObservation):
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
return {'role': 'user', 'content': content}
return None
def truncate_observation(observation: str, max_chars: int = 10_000) -> str:
"""
Truncate the middle of the observation if it is too long.
"""
if len(observation) <= max_chars:
return observation
half = max_chars // 2
return (
observation[:half]
+ '\n[... Observation truncated due to length ...]\n'
+ observation[-half:]
)
def get_system_message() -> str:
return f'{MINIMAL_SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
def get_in_context_example() -> str:
return SWE_EXAMPLE
class CodeActSWEAgent(Agent):
VERSION = '1.5'
"""
This agent is an adaptation of the original [SWE Agent](https://swe-agent.com/) based on CodeAct 1.5 using the `agentskills` library of OpenDevin.
It is intended use is **solving Github issues**.
It removes web-browsing and Github capability from the original CodeAct agent to avoid confusion to the agent.
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions
# and it need to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
jupyter_kernel_init_code: str = 'from agentskills import *'
system_message: str = get_system_message()
in_context_example: str = f"Here is an example of how you can interact with the environment for task solving:\n{get_in_context_example()}\n\nNOW, LET'S START!"
def __init__(
self,
llm: LLM,
) -> None:
"""
Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm)
self.reset()
def reset(self) -> None:
"""
Resets the CodeAct Agent.
"""
super().reset()
def step(self, state: State) -> Action:
"""
Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info and background commands
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- BrowseInteractiveAction(browsergym_command) - BrowserGym commands to run
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
messages: list[dict[str, str]] = [
{'role': 'system', 'content': self.system_message},
{'role': 'user', 'content': self.in_context_example},
]
for prev_action, obs in state.history:
action_message = get_action_message(prev_action)
if action_message:
messages.append(action_message)
obs_message = get_observation_message(obs)
if obs_message:
messages.append(obs_message)
latest_user_message = [m for m in messages if m['role'] == 'user'][-1]
if latest_user_message:
if latest_user_message['content'].strip() == '/exit':
return AgentFinishAction()
latest_user_message['content'] += (
f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task.'
)
response = self.llm.do_completion(
messages=messages,
stop=[
'</execute_ipython>',
'</execute_bash>',
'</execute_browse>',
],
temperature=0.0,
)
action_str: str = parse_response(response)
state.num_of_chars += sum(
len(message['content']) for message in messages
) + len(action_str)
if finish_command := re.search(r'<finish>.*</finish>', action_str, re.DOTALL):
thought = action_str.replace(finish_command.group(0), '').strip()
return AgentFinishAction(thought=thought)
if bash_command := re.search(
r'<execute_bash>(.*?)</execute_bash>', action_str, re.DOTALL
):
# remove the command from the action string to get thought
thought = action_str.replace(bash_command.group(0), '').strip()
# a command was found
command_group = bash_command.group(1).strip()
if command_group.strip() == 'exit':
return AgentFinishAction()
return CmdRunAction(command=command_group, thought=thought)
elif python_code := re.search(
r'<execute_ipython>(.*?)</execute_ipython>', action_str, re.DOTALL
):
# a code block was found
code_group = python_code.group(1).strip()
thought = action_str.replace(python_code.group(0), '').strip()
return IPythonRunCellAction(
code=code_group,
thought=thought,
kernel_init_code=self.jupyter_kernel_init_code,
)
elif browse_command := re.search(
r'<execute_browse>(.*)</execute_browse>', action_str, re.DOTALL
):
# BrowserGym actions was found
browse_actions = browse_command.group(1).strip()
thought = action_str.replace(browse_command.group(0), '').strip()
return BrowseInteractiveAction(
browser_actions=browse_actions, thought=thought
)
else:
# We assume the LLM is GOOD enough that when it returns pure natural language
# it want to talk to the user
return MessageAction(content=action_str, wait_for_response=True)
def search_memory(self, query: str) -> list[str]:
raise NotImplementedError('Implement this abstract method')