mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
247 lines
8.8 KiB
Python
247 lines
8.8 KiB
Python
import re
|
|
|
|
from agenthub.codeact_swe_agent.prompt import (
|
|
COMMAND_DOCS,
|
|
MINIMAL_SYSTEM_PREFIX,
|
|
SWE_EXAMPLE,
|
|
SYSTEM_SUFFIX,
|
|
)
|
|
from opendevin.controller.agent import Agent
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.events.action import (
|
|
Action,
|
|
AgentFinishAction,
|
|
BrowseInteractiveAction,
|
|
CmdRunAction,
|
|
IPythonRunCellAction,
|
|
MessageAction,
|
|
)
|
|
from opendevin.events.observation import (
|
|
BrowserOutputObservation,
|
|
CmdOutputObservation,
|
|
IPythonRunCellObservation,
|
|
)
|
|
from opendevin.llm.llm import LLM
|
|
from opendevin.runtime.plugins import (
|
|
AgentSkillsRequirement,
|
|
JupyterRequirement,
|
|
PluginRequirement,
|
|
)
|
|
|
|
|
|
def parse_response(response) -> str:
|
|
action = response.choices[0].message.content
|
|
for lang in ['bash', 'ipython', 'browse']:
|
|
if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
|
|
action += f'</execute_{lang}>'
|
|
return action
|
|
|
|
|
|
def action_to_str(action: Action) -> str:
|
|
if isinstance(action, CmdRunAction):
|
|
return f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
|
|
elif isinstance(action, IPythonRunCellAction):
|
|
return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
|
|
elif isinstance(action, BrowseInteractiveAction):
|
|
return f'{action.thought}\n<execute_browse>\n{action.browser_actions}\n</execute_browse>'
|
|
elif isinstance(action, MessageAction):
|
|
return action.content
|
|
return ''
|
|
|
|
|
|
def get_action_message(action: Action) -> dict[str, str] | None:
|
|
if (
|
|
isinstance(action, BrowseInteractiveAction)
|
|
or isinstance(action, CmdRunAction)
|
|
or isinstance(action, IPythonRunCellAction)
|
|
or isinstance(action, MessageAction)
|
|
):
|
|
return {
|
|
'role': 'user' if action.source == 'user' else 'assistant',
|
|
'content': action_to_str(action),
|
|
}
|
|
return None
|
|
|
|
|
|
def get_observation_message(obs) -> dict[str, str] | None:
|
|
if isinstance(obs, CmdOutputObservation):
|
|
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
|
|
content += (
|
|
f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
|
|
)
|
|
return {'role': 'user', 'content': content}
|
|
elif isinstance(obs, IPythonRunCellObservation):
|
|
content = 'OBSERVATION:\n' + obs.content
|
|
# replace base64 images with a placeholder
|
|
splitted = content.split('\n')
|
|
for i, line in enumerate(splitted):
|
|
if ' already displayed to user'
|
|
)
|
|
content = '\n'.join(splitted)
|
|
content = truncate_observation(content)
|
|
return {'role': 'user', 'content': content}
|
|
elif isinstance(obs, BrowserOutputObservation):
|
|
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
|
|
return {'role': 'user', 'content': content}
|
|
return None
|
|
|
|
|
|
def truncate_observation(observation: str, max_chars: int = 10_000) -> str:
|
|
"""
|
|
Truncate the middle of the observation if it is too long.
|
|
"""
|
|
if len(observation) <= max_chars:
|
|
return observation
|
|
half = max_chars // 2
|
|
return (
|
|
observation[:half]
|
|
+ '\n[... Observation truncated due to length ...]\n'
|
|
+ observation[-half:]
|
|
)
|
|
|
|
|
|
def get_system_message() -> str:
|
|
return f'{MINIMAL_SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
|
|
|
|
|
|
def get_in_context_example() -> str:
|
|
return SWE_EXAMPLE
|
|
|
|
|
|
class CodeActSWEAgent(Agent):
|
|
VERSION = '1.5'
|
|
"""
|
|
This agent is an adaptation of the original [SWE Agent](https://swe-agent.com/) based on CodeAct 1.5 using the `agentskills` library of OpenDevin.
|
|
|
|
It is intended use is **solving Github issues**.
|
|
|
|
It removes web-browsing and Github capability from the original CodeAct agent to avoid confusion to the agent.
|
|
"""
|
|
|
|
sandbox_plugins: list[PluginRequirement] = [
|
|
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
|
|
# AgentSkillsRequirement provides a lot of Python functions
|
|
# and it need to be initialized before Jupyter for Jupyter to use those functions.
|
|
AgentSkillsRequirement(),
|
|
JupyterRequirement(),
|
|
]
|
|
jupyter_kernel_init_code: str = 'from agentskills import *'
|
|
|
|
system_message: str = get_system_message()
|
|
in_context_example: str = f"Here is an example of how you can interact with the environment for task solving:\n{get_in_context_example()}\n\nNOW, LET'S START!"
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
) -> None:
|
|
"""
|
|
Initializes a new instance of the CodeActAgent class.
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm)
|
|
self.reset()
|
|
|
|
def reset(self) -> None:
|
|
"""
|
|
Resets the CodeAct Agent.
|
|
"""
|
|
super().reset()
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""
|
|
Performs one step using the CodeAct Agent.
|
|
This includes gathering info on previous steps and prompting the model to make a command to execute.
|
|
|
|
Parameters:
|
|
- state (State): used to get updated info and background commands
|
|
|
|
Returns:
|
|
- CmdRunAction(command) - bash command to run
|
|
- IPythonRunCellAction(code) - IPython code to run
|
|
- BrowseInteractiveAction(browsergym_command) - BrowserGym commands to run
|
|
- MessageAction(content) - Message action to run (e.g. ask for clarification)
|
|
- AgentFinishAction() - end the interaction
|
|
"""
|
|
messages: list[dict[str, str]] = [
|
|
{'role': 'system', 'content': self.system_message},
|
|
{'role': 'user', 'content': self.in_context_example},
|
|
]
|
|
|
|
for prev_action, obs in state.history:
|
|
action_message = get_action_message(prev_action)
|
|
if action_message:
|
|
messages.append(action_message)
|
|
|
|
obs_message = get_observation_message(obs)
|
|
if obs_message:
|
|
messages.append(obs_message)
|
|
|
|
latest_user_message = [m for m in messages if m['role'] == 'user'][-1]
|
|
if latest_user_message:
|
|
if latest_user_message['content'].strip() == '/exit':
|
|
return AgentFinishAction()
|
|
latest_user_message['content'] += (
|
|
f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task.'
|
|
)
|
|
|
|
response = self.llm.do_completion(
|
|
messages=messages,
|
|
stop=[
|
|
'</execute_ipython>',
|
|
'</execute_bash>',
|
|
'</execute_browse>',
|
|
],
|
|
temperature=0.0,
|
|
)
|
|
|
|
action_str: str = parse_response(response)
|
|
state.num_of_chars += sum(
|
|
len(message['content']) for message in messages
|
|
) + len(action_str)
|
|
|
|
if finish_command := re.search(r'<finish>.*</finish>', action_str, re.DOTALL):
|
|
thought = action_str.replace(finish_command.group(0), '').strip()
|
|
return AgentFinishAction(thought=thought)
|
|
if bash_command := re.search(
|
|
r'<execute_bash>(.*?)</execute_bash>', action_str, re.DOTALL
|
|
):
|
|
# remove the command from the action string to get thought
|
|
thought = action_str.replace(bash_command.group(0), '').strip()
|
|
# a command was found
|
|
command_group = bash_command.group(1).strip()
|
|
|
|
if command_group.strip() == 'exit':
|
|
return AgentFinishAction()
|
|
return CmdRunAction(command=command_group, thought=thought)
|
|
elif python_code := re.search(
|
|
r'<execute_ipython>(.*?)</execute_ipython>', action_str, re.DOTALL
|
|
):
|
|
# a code block was found
|
|
code_group = python_code.group(1).strip()
|
|
thought = action_str.replace(python_code.group(0), '').strip()
|
|
return IPythonRunCellAction(
|
|
code=code_group,
|
|
thought=thought,
|
|
kernel_init_code=self.jupyter_kernel_init_code,
|
|
)
|
|
elif browse_command := re.search(
|
|
r'<execute_browse>(.*)</execute_browse>', action_str, re.DOTALL
|
|
):
|
|
# BrowserGym actions was found
|
|
browse_actions = browse_command.group(1).strip()
|
|
thought = action_str.replace(browse_command.group(0), '').strip()
|
|
return BrowseInteractiveAction(
|
|
browser_actions=browse_actions, thought=thought
|
|
)
|
|
else:
|
|
# We assume the LLM is GOOD enough that when it returns pure natural language
|
|
# it want to talk to the user
|
|
return MessageAction(content=action_str, wait_for_response=True)
|
|
|
|
def search_memory(self, query: str) -> list[str]:
|
|
raise NotImplementedError('Implement this abstract method')
|