OpenHands/agenthub/codeact_agent/codeact_agent.py
Engel Nyst 92b1a2da5c
Refactor agent to accept agent config (#3430)
* refactor agents to receive their agent config

* add unit test

* fix test

* fix tests
2024-08-17 18:11:30 +02:00

279 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from agenthub.codeact_agent.action_parser import CodeActResponseParser
from agenthub.codeact_agent.prompt import (
COMMAND_DOCS,
EXAMPLES,
GITHUB_MESSAGE,
SYSTEM_PREFIX,
SYSTEM_SUFFIX,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.core.config import AgentConfig
from opendevin.core.message import ImageContent, Message, TextContent
from opendevin.events.action import (
Action,
AgentDelegateAction,
AgentFinishAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
)
from opendevin.events.observation import (
AgentDelegateObservation,
CmdOutputObservation,
IPythonRunCellObservation,
)
from opendevin.events.observation.error import ErrorObservation
from opendevin.events.observation.observation import Observation
from opendevin.events.serialization.event import truncate_content
from opendevin.llm.llm import LLM
from opendevin.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
from opendevin.runtime.tools import RuntimeTool
ENABLE_GITHUB = True
# FIXME: We can tweak these two settings to create MicroAgents specialized toward different area
def get_system_message() -> str:
if ENABLE_GITHUB:
return f'{SYSTEM_PREFIX}\n{GITHUB_MESSAGE}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
else:
return f'{SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
def get_in_context_example() -> str:
return EXAMPLES
class CodeActAgent(Agent):
VERSION = '1.8'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/OpenDevin/OpenDevin/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
### Plugin System
To make the CodeAct agent more powerful with only access to `bash` action space, CodeAct agent leverages OpenDevin's plugin system:
- [Jupyter plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/jupyter): for IPython execution via bash command
- [SWE-agent tool plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/swe_agent_commands): Powerful bash command line tools for software development tasks introduced by [swe-agent](https://github.com/princeton-nlp/swe-agent).
### Demo
https://github.com/OpenDevin/OpenDevin/assets/38853559/f592a192-e86c-4f48-ad31-d69282d5f6ac
*Example of CodeActAgent with `gpt-4-turbo-2024-04-09` performing a data science task (linear regression)*
### Work-in-progress & Next step
[] Support web-browsing
[] Complete the workflow for CodeAct agent to submit Github PRs
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions,
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
runtime_tools: list[RuntimeTool] = [RuntimeTool.BROWSER]
system_message: str = get_system_message()
in_context_example: str = f"Here is an example of how you can interact with the environment for task solving:\n{get_in_context_example()}\n\nNOW, LET'S START!"
action_parser = CodeActResponseParser()
def __init__(
self,
llm: LLM,
config: AgentConfig,
) -> None:
"""Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm, config)
self.reset()
def action_to_str(self, action: Action) -> str:
if isinstance(action, CmdRunAction):
return (
f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
)
elif isinstance(action, IPythonRunCellAction):
return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
elif isinstance(action, AgentDelegateAction):
return f'{action.thought}\n<execute_browse>\n{action.inputs["task"]}\n</execute_browse>'
elif isinstance(action, MessageAction):
return action.content
elif isinstance(action, AgentFinishAction) and action.source == 'agent':
return action.thought
return ''
def get_action_message(self, action: Action) -> Message | None:
if (
isinstance(action, AgentDelegateAction)
or isinstance(action, CmdRunAction)
or isinstance(action, IPythonRunCellAction)
or isinstance(action, MessageAction)
or (isinstance(action, AgentFinishAction) and action.source == 'agent')
):
content = [TextContent(text=self.action_to_str(action))]
if isinstance(action, MessageAction) and action.images_urls:
content.append(ImageContent(image_urls=action.images_urls))
return Message(
role='user' if action.source == 'user' else 'assistant', content=content
)
return None
def get_observation_message(self, obs: Observation) -> Message | None:
max_message_chars = self.llm.config.max_message_chars
if isinstance(obs, CmdOutputObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += (
f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]'
)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, IPythonRunCellObservation):
text = 'OBSERVATION:\n' + obs.content
# replace base64 images with a placeholder
splitted = text.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
text = '\n'.join(splitted)
text = truncate_content(text, max_message_chars)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentDelegateObservation):
text = 'OBSERVATION:\n' + truncate_content(
str(obs.outputs), max_message_chars
)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, ErrorObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += '\n[Error occurred in processing last action]'
return Message(role='user', content=[TextContent(text=text)])
else:
# If an observation message is not returned, it will cause an error
# when the LLM tries to return the next message
raise ValueError(f'Unknown observation type: {type(obs)}')
def reset(self) -> None:
"""Resets the CodeAct Agent."""
super().reset()
def step(self, state: State) -> Action:
"""Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
# if we're done, go back
latest_user_message = state.history.get_last_user_message()
if latest_user_message and latest_user_message.strip() == '/exit':
return AgentFinishAction()
# prepare what we want to send to the LLM
messages = self._get_messages(state)
response = self.llm.completion(
messages=[message.model_dump() for message in messages],
stop=[
'</execute_ipython>',
'</execute_bash>',
'</execute_browse>',
],
temperature=0.0,
)
return self.action_parser.parse(response)
def _get_messages(self, state: State) -> list[Message]:
messages: list[Message] = [
Message(role='system', content=[TextContent(text=self.system_message)]),
Message(role='user', content=[TextContent(text=self.in_context_example)]),
]
for event in state.history.get_events():
# create a regular message from an event
if isinstance(event, Action):
message = self.get_action_message(event)
elif isinstance(event, Observation):
message = self.get_observation_message(event)
else:
raise ValueError(f'Unknown event type: {type(event)}')
# add regular message
if message:
# handle error if the message is the SAME role as the previous message
# litellm.exceptions.BadRequestError: litellm.BadRequestError: OpenAIException - Error code: 400 - {'detail': 'Only supports u/a/u/a/u...'}
# there should not have two consecutive messages from the same role
if messages and messages[-1].role == message.role:
messages[-1].content.extend(message.content)
else:
messages.append(message)
# the latest user message is important:
# we want to remind the agent of the environment constraints
latest_user_message = next(
(
m
for m in reversed(messages)
if m.role == 'user'
and any(isinstance(c, TextContent) for c in m.content)
),
None,
)
# Get the last user text inside content
if latest_user_message:
latest_user_message_text = next(
(
t
for t in reversed(latest_user_message.content)
if isinstance(t, TextContent)
)
)
# add a reminder to the prompt
reminder_text = f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task. When finished reply with <finish></finish>.'
if latest_user_message_text:
latest_user_message_text.text = (
latest_user_message_text.text + reminder_text
)
else:
latest_user_message_text = TextContent(text=reminder_text)
latest_user_message.content.append(latest_user_message_text)
return messages