mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* renaming more opendevin occurences * remove DOCKER_IMAGE variable from Makefile * Revert rename in evaluation/swe_bench/run_infer.py Co-authored-by: Xingyao Wang <xingyao@all-hands.dev> --------- Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
416 lines
16 KiB
Python
416 lines
16 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
import tempfile
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
import toml
|
|
from datasets import load_dataset
|
|
|
|
import agenthub
|
|
from evaluation.swe_bench.prompt import CODEACT_SWE_PROMPT
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction
|
|
from openhands.events.observation import CmdOutputObservation, ErrorObservation
|
|
from openhands.runtime.runtime import Runtime
|
|
|
|
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
|
|
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
'CodeActSWEAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
|
|
'CodeActSWEAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n',
|
|
}
|
|
|
|
|
|
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
|
|
return f'{instance.repo}__{instance.version}'.replace('/', '__')
|
|
|
|
|
|
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
|
|
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
|
|
# Prepare instruction
|
|
if metadata.agent_class == 'CodeActSWEAgent':
|
|
instruction = (
|
|
'We are currently solving the following issue within our repository. Here is the issue text:\n'
|
|
'--- BEGIN ISSUE ---\n'
|
|
f'{instance.problem_statement}\n'
|
|
'--- END ISSUE ---\n\n'
|
|
)
|
|
if USE_HINT_TEXT and instance.hints_text:
|
|
instruction += (
|
|
f'--- BEGIN HINTS ---\n{instance.hints_text}\n--- END HINTS ---\n'
|
|
)
|
|
instruction += CODEACT_SWE_PROMPT.format(workspace_dir_name=workspace_dir_name)
|
|
else:
|
|
# Testing general agents
|
|
instruction = (
|
|
f'Please fix the following issue for the repository in /workspace/{workspace_dir_name}.\n'
|
|
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
|
|
'# Problem Statement\n'
|
|
f'{instance.problem_statement}\n\n'
|
|
)
|
|
if USE_HINT_TEXT and instance.hints_text:
|
|
instruction += f'# Hints\n{instance.hints_text}\n\n'
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
|
|
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
|
|
)
|
|
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
return instruction
|
|
|
|
|
|
def get_config(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
SWE_BENCH_CONTAINER_IMAGE = 'ghcr.io/opendevin/eval-swe-bench:full-v1.2.1'
|
|
if USE_INSTANCE_IMAGE:
|
|
# We use a different instance image for the each instance of swe-bench eval
|
|
container_image = 'sweb.eval.x86_64.' + instance['instance_id']
|
|
else:
|
|
container_image = SWE_BENCH_CONTAINER_IMAGE
|
|
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='eventstream',
|
|
max_budget_per_task=4,
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
container_image=container_image,
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
# large enough timeout, since some testcases take very long to run
|
|
timeout=300,
|
|
),
|
|
# do not mount workspace
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
return config
|
|
|
|
|
|
async def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series, # this argument is not required
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info('-' * 30)
|
|
logger.info('BEGIN Runtime Initialization Fn')
|
|
logger.info('-' * 30)
|
|
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
|
|
obs: CmdOutputObservation
|
|
|
|
# Set instance id
|
|
action = CmdRunAction(
|
|
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
if USE_INSTANCE_IMAGE:
|
|
# inject the init script
|
|
script_dir = os.path.dirname(__file__)
|
|
|
|
# inject the instance info
|
|
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert (
|
|
obs.exit_code == 0
|
|
), f'Failed to create /swe_util/eval_data/instances: {obs.content}'
|
|
|
|
swe_instance_json_name = 'swe-bench-instance.json'
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
# Construct the full path for the desired file name within the temporary directory
|
|
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
|
|
# Write to the file with the desired name within the temporary directory
|
|
with open(temp_file_path, 'w') as f:
|
|
if not isinstance(instance, dict):
|
|
json.dump([instance.to_dict()], f)
|
|
else:
|
|
json.dump([instance], f)
|
|
|
|
# Copy the file to the desired location
|
|
await runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
|
|
|
|
# inject the instance swe entry
|
|
await runtime.copy_to(
|
|
str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
|
|
'/swe_util/',
|
|
)
|
|
action = CmdRunAction(command='cat ~/.bashrc')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='source ~/.bashrc')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
else:
|
|
action = CmdRunAction(command='source /swe_util/swe_entry.sh')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert (
|
|
obs.exit_code == 0
|
|
), f'Failed to source /swe_util/swe_entry.sh: {obs.content}'
|
|
|
|
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='git reset --hard')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(
|
|
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info('-' * 30)
|
|
logger.info('END Runtime Initialization Fn')
|
|
logger.info('-' * 30)
|
|
|
|
|
|
async def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info('-' * 30)
|
|
logger.info('BEGIN Runtime Completion Fn')
|
|
logger.info('-' * 30)
|
|
obs: CmdOutputObservation
|
|
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
|
|
|
|
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='git config --global core.pager ""')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='git add -A')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
|
|
n_retries = 0
|
|
git_patch = None
|
|
while n_retries < 5:
|
|
action = CmdRunAction(
|
|
command=f'git diff --no-color --cached {instance["base_commit"]}',
|
|
keep_prompt=False,
|
|
)
|
|
action.timeout = 600 + 100 * n_retries
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
n_retries += 1
|
|
if isinstance(obs, CmdOutputObservation):
|
|
if obs.exit_code == 0:
|
|
git_patch = obs.content.strip()
|
|
break
|
|
else:
|
|
logger.info('Failed to get git diff, retrying...')
|
|
await asyncio.sleep(10)
|
|
elif isinstance(obs, ErrorObservation):
|
|
logger.error(f'Error occurred: {obs.content}. Retrying...')
|
|
await asyncio.sleep(10)
|
|
else:
|
|
raise ValueError(f'Unexpected observation type: {type(obs)}')
|
|
|
|
logger.info('-' * 30)
|
|
logger.info('END Runtime Completion Fn')
|
|
logger.info('-' * 30)
|
|
return {'git_patch': git_patch}
|
|
|
|
|
|
async def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(instance, metadata)
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
|
|
|
|
runtime = await create_runtime(config, sid=instance.instance_id)
|
|
await initialize_runtime(runtime, instance)
|
|
|
|
instruction = get_instruction(instance, metadata)
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
state: State | None = await run_controller(
|
|
config=config,
|
|
task_str=instruction,
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[metadata.agent_class],
|
|
)
|
|
|
|
# ======= THIS IS SWE-Bench specific =======
|
|
# Get git patch
|
|
return_val = await complete_runtime(runtime, instance)
|
|
git_patch = return_val['git_patch']
|
|
logger.info(
|
|
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
|
|
)
|
|
# ==========================================
|
|
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# we use eval_infer.sh to evaluate the agent's edits, not here
|
|
# because the agent may alter the environment / testcases
|
|
test_result = {
|
|
'git_patch': git_patch,
|
|
}
|
|
|
|
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# Save the output
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instruction=instruction,
|
|
instance=instance.to_dict(), # SWE Bench specific
|
|
test_result=test_result,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
)
|
|
return output
|
|
|
|
|
|
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
|
|
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'r') as file:
|
|
data = toml.load(file)
|
|
if 'selected_ids' in data:
|
|
selected_ids = data['selected_ids']
|
|
logger.info(
|
|
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
|
|
)
|
|
subset = dataset[dataset[filter_column].isin(selected_ids)]
|
|
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
|
|
return subset
|
|
return dataset
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
|
|
# so we don't need to manage file uploading to OpenHands's repo
|
|
dataset = load_dataset('princeton-nlp/SWE-bench_Lite')
|
|
swe_bench_tests = filter_dataset(dataset['test'].to_pandas(), 'instance_id')
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
details = {}
|
|
_agent_cls = agenthub.Agent.get_cls(args.agent_cls)
|
|
if hasattr(_agent_cls, 'system_message'):
|
|
details['system_message'] = _agent_cls.system_message
|
|
if hasattr(_agent_cls, 'in_context_example'):
|
|
details['in_context_example'] = _agent_cls.in_context_example
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'swe-bench-lite',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
details=details,
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
|
|
|
|
asyncio.run(
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
)
|