mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
248 lines
9.9 KiB
Python
248 lines
9.9 KiB
Python
import json
|
|
import os
|
|
from collections import deque
|
|
|
|
import openhands
|
|
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
|
|
from openhands.controller.agent import Agent
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import AgentConfig
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.message import Message, TextContent
|
|
from openhands.core.message_utils import (
|
|
apply_prompt_caching,
|
|
events_to_messages,
|
|
)
|
|
from openhands.events.action import (
|
|
Action,
|
|
AgentFinishAction,
|
|
)
|
|
from openhands.llm.llm import LLM
|
|
from openhands.memory.condenser import Condenser
|
|
from openhands.runtime.plugins import (
|
|
AgentSkillsRequirement,
|
|
JupyterRequirement,
|
|
PluginRequirement,
|
|
)
|
|
from openhands.utils.prompt import PromptManager
|
|
|
|
|
|
class CodeActAgent(Agent):
|
|
VERSION = '2.2'
|
|
"""
|
|
The Code Act Agent is a minimalist agent.
|
|
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
|
|
|
|
### Overview
|
|
|
|
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
|
|
|
|
The conceptual idea is illustrated below. At each turn, the agent can:
|
|
|
|
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
|
|
2. **CodeAct**: Choose to perform the task by executing code
|
|
- Execute any valid Linux `bash` command
|
|
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
|
|
|
|

|
|
|
|
"""
|
|
|
|
sandbox_plugins: list[PluginRequirement] = [
|
|
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
|
|
# AgentSkillsRequirement provides a lot of Python functions,
|
|
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
|
|
AgentSkillsRequirement(),
|
|
JupyterRequirement(),
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
config: AgentConfig,
|
|
) -> None:
|
|
"""Initializes a new instance of the CodeActAgent class.
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm, config)
|
|
self.pending_actions: deque[Action] = deque()
|
|
self.reset()
|
|
|
|
# Retrieve the enabled tools
|
|
self.tools = codeact_function_calling.get_tools(
|
|
codeact_enable_browsing=self.config.codeact_enable_browsing,
|
|
codeact_enable_jupyter=self.config.codeact_enable_jupyter,
|
|
codeact_enable_llm_editor=self.config.codeact_enable_llm_editor,
|
|
)
|
|
logger.debug(
|
|
f'TOOLS loaded for CodeActAgent: {json.dumps(self.tools, indent=2, ensure_ascii=False).replace("\\n", "\n")}'
|
|
)
|
|
self.prompt_manager = PromptManager(
|
|
microagent_dir=os.path.join(
|
|
os.path.dirname(os.path.dirname(openhands.__file__)),
|
|
'microagents',
|
|
)
|
|
if self.config.enable_prompt_extensions
|
|
else None,
|
|
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
|
|
disabled_microagents=self.config.disabled_microagents,
|
|
)
|
|
|
|
self.condenser = Condenser.from_config(self.config.condenser)
|
|
logger.debug(f'Using condenser: {self.condenser}')
|
|
|
|
def reset(self) -> None:
|
|
"""Resets the CodeAct Agent."""
|
|
super().reset()
|
|
self.pending_actions.clear()
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""Performs one step using the CodeAct Agent.
|
|
This includes gathering info on previous steps and prompting the model to make a command to execute.
|
|
|
|
Parameters:
|
|
- state (State): used to get updated info
|
|
|
|
Returns:
|
|
- CmdRunAction(command) - bash command to run
|
|
- IPythonRunCellAction(code) - IPython code to run
|
|
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
|
|
- MessageAction(content) - Message action to run (e.g. ask for clarification)
|
|
- AgentFinishAction() - end the interaction
|
|
"""
|
|
# Continue with pending actions if any
|
|
if self.pending_actions:
|
|
return self.pending_actions.popleft()
|
|
|
|
# if we're done, go back
|
|
latest_user_message = state.get_last_user_message()
|
|
if latest_user_message and latest_user_message.content.strip() == '/exit':
|
|
return AgentFinishAction()
|
|
|
|
# prepare what we want to send to the LLM
|
|
messages = self._get_messages(state)
|
|
params: dict = {
|
|
'messages': self.llm.format_messages_for_llm(messages),
|
|
}
|
|
params['tools'] = self.tools
|
|
response = self.llm.completion(**params)
|
|
actions = codeact_function_calling.response_to_actions(response)
|
|
for action in actions:
|
|
self.pending_actions.append(action)
|
|
return self.pending_actions.popleft()
|
|
|
|
def _get_messages(self, state: State) -> list[Message]:
|
|
"""Constructs the message history for the LLM conversation.
|
|
|
|
This method builds a structured conversation history by processing events from the state
|
|
and formatting them into messages that the LLM can understand. It handles both regular
|
|
message flow and function-calling scenarios.
|
|
|
|
The method performs the following steps:
|
|
1. Initializes with system prompt and optional initial user message
|
|
2. Processes events (Actions and Observations) into messages
|
|
3. Handles tool calls and their responses in function-calling mode
|
|
4. Manages message role alternation (user/assistant/tool)
|
|
5. Applies caching for specific LLM providers (e.g., Anthropic)
|
|
6. Adds environment reminders for non-function-calling mode
|
|
|
|
Args:
|
|
state (State): The current state object containing conversation history and other metadata
|
|
|
|
Returns:
|
|
list[Message]: A list of formatted messages ready for LLM consumption, including:
|
|
- System message with prompt
|
|
- Initial user message (if configured)
|
|
- Action messages (from both user and assistant)
|
|
- Observation messages (including tool responses)
|
|
- Environment reminders (in non-function-calling mode)
|
|
|
|
Note:
|
|
- In function-calling mode, tool calls and their responses are carefully tracked
|
|
to maintain proper conversation flow
|
|
- Messages from the same role are combined to prevent consecutive same-role messages
|
|
- For Anthropic models, specific messages are cached according to their documentation
|
|
"""
|
|
if not self.prompt_manager:
|
|
raise Exception('Prompt Manager not instantiated.')
|
|
|
|
messages: list[Message] = self._initial_messages()
|
|
|
|
# Condense the events from the state.
|
|
events = self.condenser.condensed_history(state)
|
|
|
|
messages += events_to_messages(
|
|
events,
|
|
max_message_chars=self.llm.config.max_message_chars,
|
|
vision_is_active=self.llm.vision_is_active(),
|
|
enable_som_visual_browsing=self.config.enable_som_visual_browsing,
|
|
)
|
|
|
|
messages = self._enhance_messages(messages)
|
|
|
|
if self.llm.is_caching_prompt_active():
|
|
apply_prompt_caching(messages)
|
|
|
|
return messages
|
|
|
|
def _initial_messages(self) -> list[Message]:
|
|
"""Creates the initial messages (including the system prompt) for the LLM conversation."""
|
|
assert self.prompt_manager, 'Prompt Manager not instantiated.'
|
|
|
|
return [
|
|
Message(
|
|
role='system',
|
|
content=[
|
|
TextContent(
|
|
text=self.prompt_manager.get_system_message(),
|
|
cache_prompt=self.llm.is_caching_prompt_active(),
|
|
)
|
|
],
|
|
)
|
|
]
|
|
|
|
def _enhance_messages(self, messages: list[Message]) -> list[Message]:
|
|
"""Enhances the user message with additional context based on keywords matched.
|
|
|
|
Args:
|
|
messages (list[Message]): The list of messages to enhance
|
|
|
|
Returns:
|
|
list[Message]: The enhanced list of messages
|
|
"""
|
|
assert self.prompt_manager, 'Prompt Manager not instantiated.'
|
|
|
|
results: list[Message] = []
|
|
is_first_message_handled = False
|
|
prev_role = None
|
|
|
|
for msg in messages:
|
|
if msg.role == 'user' and not is_first_message_handled:
|
|
is_first_message_handled = True
|
|
# compose the first user message with examples
|
|
self.prompt_manager.add_examples_to_initial_message(msg)
|
|
|
|
# and/or repo/runtime info
|
|
if self.config.enable_prompt_extensions:
|
|
self.prompt_manager.add_info_to_initial_message(msg)
|
|
|
|
# enhance the user message with additional context based on keywords matched
|
|
if msg.role == 'user':
|
|
self.prompt_manager.enhance_message(msg)
|
|
|
|
# Add double newline between consecutive user messages
|
|
if prev_role == 'user' and len(msg.content) > 0:
|
|
# Find the first TextContent in the message to add newlines
|
|
for content_item in msg.content:
|
|
if isinstance(content_item, TextContent):
|
|
# If the previous message was also from a user, prepend two newlines to ensure separation
|
|
content_item.text = '\n\n' + content_item.text
|
|
break
|
|
|
|
results.append(msg)
|
|
prev_role = msg.role
|
|
|
|
return results
|