Xingyao Wang 6032d2620d
feat(MCP): MCP refactor, support stdio, and running MCP server in runtime (#7911)
Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Calvin Smith <email@cjsmith.io>
2025-05-02 09:43:19 +08:00

277 lines
12 KiB
Python

import copy
import os
from collections import deque
from litellm import ChatCompletionToolParam
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
from openhands.agenthub.codeact_agent.tools.bash import create_cmd_run_tool
from openhands.agenthub.codeact_agent.tools.browser import BrowserTool
from openhands.agenthub.codeact_agent.tools.finish import FinishTool
from openhands.agenthub.codeact_agent.tools.ipython import IPythonTool
from openhands.agenthub.codeact_agent.tools.llm_based_edit import LLMBasedFileEditTool
from openhands.agenthub.codeact_agent.tools.str_replace_editor import (
create_str_replace_editor_tool,
)
from openhands.agenthub.codeact_agent.tools.think import ThinkTool
from openhands.agenthub.codeact_agent.tools.web_read import WebReadTool
from openhands.controller.agent import Agent
from openhands.controller.state.state import State
from openhands.core.config import AgentConfig
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message
from openhands.events.action import Action, AgentFinishAction, MessageAction
from openhands.events.event import Event
from openhands.llm.llm import LLM
from openhands.memory.condenser import Condenser
from openhands.memory.condenser.condenser import Condensation, View
from openhands.memory.conversation_memory import ConversationMemory
from openhands.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
from openhands.utils.prompt import PromptManager
class CodeActAgent(Agent):
VERSION = '2.2'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions,
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
def __init__(
self,
llm: LLM,
config: AgentConfig,
) -> None:
"""Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
- config (AgentConfig): The configuration for this agent
"""
super().__init__(llm, config)
self.pending_actions: deque[Action] = deque()
self.reset()
self.tools = self._get_tools()
self.prompt_manager = PromptManager(
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
)
# Create a ConversationMemory instance
self.conversation_memory = ConversationMemory(self.config, self.prompt_manager)
self.condenser = Condenser.from_config(self.config.condenser)
logger.debug(f'Using condenser: {type(self.condenser)}')
self.response_to_actions_fn = codeact_function_calling.response_to_actions
def _get_tools(self) -> list[ChatCompletionToolParam]:
# For these models, we use short tool descriptions ( < 1024 tokens)
# to avoid hitting the OpenAI token limit for tool descriptions.
SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS = ['gpt-', 'o3', 'o1', 'o4']
use_short_tool_desc = False
if self.llm is not None:
use_short_tool_desc = any(
model_substr in self.llm.config.model
for model_substr in SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS
)
tools = []
if self.config.enable_cmd:
tools.append(create_cmd_run_tool(use_short_description=use_short_tool_desc))
if self.config.enable_think:
tools.append(ThinkTool)
if self.config.enable_finish:
tools.append(FinishTool)
if self.config.enable_browsing:
tools.append(WebReadTool)
tools.append(BrowserTool)
if self.config.enable_jupyter:
tools.append(IPythonTool)
if self.config.enable_llm_editor:
tools.append(LLMBasedFileEditTool)
elif self.config.enable_editor:
tools.append(
create_str_replace_editor_tool(
use_short_description=use_short_tool_desc
)
)
return tools
def reset(self) -> None:
"""Resets the CodeAct Agent."""
super().reset()
self.pending_actions.clear()
def step(self, state: State) -> Action:
"""Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
# Continue with pending actions if any
if self.pending_actions:
return self.pending_actions.popleft()
# if we're done, go back
latest_user_message = state.get_last_user_message()
if latest_user_message and latest_user_message.content.strip() == '/exit':
return AgentFinishAction()
# Condense the events from the state. If we get a view we'll pass those
# to the conversation manager for processing, but if we get a condensation
# event we'll just return that instead of an action. The controller will
# immediately ask the agent to step again with the new view.
condensed_history: list[Event] = []
match self.condenser.condensed_history(state):
case View(events=events):
condensed_history = events
case Condensation(action=condensation_action):
return condensation_action
logger.debug(
f'Processing {len(condensed_history)} events from a total of {len(state.history)} events'
)
initial_user_message = self._get_initial_user_message(state.history)
messages = self._get_messages(condensed_history, initial_user_message)
params: dict = {
'messages': self.llm.format_messages_for_llm(messages),
}
params['tools'] = self.tools
# Special handling for Gemini model which doesn't support default fields
if self.llm.config.model == 'gemini-2.5-pro-preview-03-25':
logger.info(
f'Removing the default fields from tools for {self.llm.config.model} '
"since it doesn't support them and the request would crash."
)
# prevent mutation of input tools
params['tools'] = copy.deepcopy(params['tools'])
# Strip off default fields that cause errors with gemini-preview
for tool in params['tools']:
if 'function' in tool and 'parameters' in tool['function']:
if 'properties' in tool['function']['parameters']:
for prop_name, prop in tool['function']['parameters'][
'properties'
].items():
if 'default' in prop:
del prop['default']
# log to litellm proxy if possible
params['extra_body'] = {'metadata': state.to_llm_metadata(agent_name=self.name)}
response = self.llm.completion(**params)
logger.debug(f'Response from LLM: {response}')
actions = self.response_to_actions_fn(
response, mcp_tool_names=list(self.mcp_tools.keys())
)
logger.debug(f'Actions after response_to_actions: {actions}')
for action in actions:
self.pending_actions.append(action)
return self.pending_actions.popleft()
def _get_initial_user_message(self, history: list[Event]) -> MessageAction:
"""Finds the initial user message action from the full history."""
initial_user_message: MessageAction | None = None
for event in history:
if isinstance(event, MessageAction) and event.source == 'user':
initial_user_message = event
break
if initial_user_message is None:
# This should not happen in a valid conversation
logger.error(
f'CRITICAL: Could not find the initial user MessageAction in the full {len(history)} events history.'
)
# Depending on desired robustness, could raise error or create a dummy action
# and log the error
raise ValueError(
'Initial user message not found in history. Please report this issue.'
)
return initial_user_message
def _get_messages(
self, events: list[Event], initial_user_message: MessageAction
) -> list[Message]:
"""Constructs the message history for the LLM conversation.
This method builds a structured conversation history by processing events from the state
and formatting them into messages that the LLM can understand. It handles both regular
message flow and function-calling scenarios.
The method performs the following steps:
1. Checks for SystemMessageAction in events, adds one if missing (legacy support)
2. Processes events (Actions and Observations) into messages, including SystemMessageAction
3. Handles tool calls and their responses in function-calling mode
4. Manages message role alternation (user/assistant/tool)
5. Applies caching for specific LLM providers (e.g., Anthropic)
6. Adds environment reminders for non-function-calling mode
Args:
events: The list of events to convert to messages
Returns:
list[Message]: A list of formatted messages ready for LLM consumption, including:
- System message with prompt (from SystemMessageAction)
- Action messages (from both user and assistant)
- Observation messages (including tool responses)
- Environment reminders (in non-function-calling mode)
Note:
- In function-calling mode, tool calls and their responses are carefully tracked
to maintain proper conversation flow
- Messages from the same role are combined to prevent consecutive same-role messages
- For Anthropic models, specific messages are cached according to their documentation
"""
if not self.prompt_manager:
raise Exception('Prompt Manager not instantiated.')
# Use ConversationMemory to process events (including SystemMessageAction)
messages = self.conversation_memory.process_events(
condensed_history=events,
initial_user_action=initial_user_message,
max_message_chars=self.llm.config.max_message_chars,
vision_is_active=self.llm.vision_is_active(),
)
if self.llm.is_caching_prompt_active():
self.conversation_memory.apply_prompt_caching(messages)
return messages