OpenHands/agenthub/codeact_agent/codeact_agent.py
Xingyao Wang 602ffcdffb
Implement agentskills for OpenDevin to helpfully improve edit AND including more useful tools/skills (#1941)
* add draft for skills

* Implement and test agentskills functions: open_file, goto_line, scroll_down, scroll_up, create_file, search_dir, search_file, find_file

* Remove new_sample.txt file

* add some work from opendevin w/ fixes

* Add unit tests for agentskills module

* fix some issues and updated tests

* add more tests for open

* tweak and handle goto_line

* add tests for some edge cases

* add tests for scrolling

* add tests for edit

* add tests for search_dir

* update tests to use pytest

* use pytest --forked to avoid file op unit tests to interfere with each other via global var

* update doc based on swe agent tool

* update and add tests for find_file and search_file

* move agent_skills to plugins

* add agentskills as plugin and docs

* add agentskill to ssh box and fix sandbox integration

* remove extra returns in doc

* add agentskills to initial tool for jupyter

* support re-init jupyter kernel (for agentskills) after restart

* fix print window's issue with indentation and add testcases

* add prompt for codeact with the newest edit primitives

* modify the way line number is presented (remove leading space)

* change prompt to the newest display format

* support tracking of costs via metrics

* Update opendevin/runtime/plugins/agent_skills/README.md

* Update opendevin/runtime/plugins/agent_skills/README.md

* implement and add tests for py linting

* remove extra text arg for incompatible subprocess ver

* remove sample.txt

* update test_edits integration tests

* fix all integration

* Update opendevin/runtime/plugins/agent_skills/README.md

* Update opendevin/runtime/plugins/agent_skills/README.md

* Update opendevin/runtime/plugins/agent_skills/README.md

* Update agenthub/codeact_agent/prompt.py

Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>

* Update agenthub/codeact_agent/prompt.py

Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>

* Update agenthub/codeact_agent/prompt.py

Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>

* Update opendevin/runtime/plugins/agent_skills/agentskills.py

Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>

* correctly setup plugins for swebench eval

* bump swe-bench version and add logging

* correctly setup plugins for swebench eval

* bump swe-bench version and add logging

* Revert "correctly setup plugins for swebench eval"

This reverts commit 2bd10556739e2af602ea85371b976390f7c48077.

* bump version

* remove _AGENT_SKILLS_DOCS

* move flake8 to test dep

* update poetry.lock

* remove extra arg

* reduce max iter for eval

* update poetry

* fix integration tests

---------

Co-authored-by: OpenDevin <opendevin@opendevin.ai>
Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>
2024-05-23 16:04:09 +00:00

276 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import re
from agenthub.codeact_agent.prompt import (
COMMAND_DOCS,
EXAMPLES,
GITHUB_MESSAGE,
SYSTEM_PREFIX,
SYSTEM_SUFFIX,
)
from opendevin.controller.agent import Agent
from opendevin.controller.state.state import State
from opendevin.events.action import (
Action,
AgentFinishAction,
BrowseInteractiveAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
)
from opendevin.events.observation import (
BrowserOutputObservation,
CmdOutputObservation,
IPythonRunCellObservation,
)
from opendevin.llm.llm import LLM
from opendevin.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
ENABLE_GITHUB = True
def parse_response(response) -> str:
action = response.choices[0].message.content
for lang in ['bash', 'ipython', 'browse']:
if f'<execute_{lang}>' in action and f'</execute_{lang}>' not in action:
action += f'</execute_{lang}>'
return action
def action_to_str(action: Action) -> str:
if isinstance(action, CmdRunAction):
return f'{action.thought}\n<execute_bash>\n{action.command}\n</execute_bash>'
elif isinstance(action, IPythonRunCellAction):
return f'{action.thought}\n<execute_ipython>\n{action.code}\n</execute_ipython>'
elif isinstance(action, BrowseInteractiveAction):
return f'{action.thought}\n<execute_browse>\n{action.browser_actions}\n</execute_browse>'
elif isinstance(action, MessageAction):
return action.content
return ''
def get_action_message(action: Action) -> dict[str, str] | None:
if (
isinstance(action, BrowseInteractiveAction)
or isinstance(action, CmdRunAction)
or isinstance(action, IPythonRunCellAction)
or isinstance(action, MessageAction)
):
return {
'role': 'user' if action.source == 'user' else 'assistant',
'content': action_to_str(action),
}
return None
def get_observation_message(obs) -> dict[str, str] | None:
if isinstance(obs, CmdOutputObservation):
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
content += (
f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]]'
)
return {'role': 'user', 'content': content}
elif isinstance(obs, IPythonRunCellObservation):
content = 'OBSERVATION:\n' + obs.content
# replace base64 images with a placeholder
splitted = content.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
content = '\n'.join(splitted)
content = truncate_observation(content)
return {'role': 'user', 'content': content}
elif isinstance(obs, BrowserOutputObservation):
content = 'OBSERVATION:\n' + truncate_observation(obs.content)
return {'role': 'user', 'content': content}
return None
def truncate_observation(observation: str, max_chars: int = 10_000) -> str:
"""
Truncate the middle of the observation if it is too long.
"""
if len(observation) <= max_chars:
return observation
half = max_chars // 2
return (
observation[:half]
+ '\n[... Observation truncated due to length ...]\n'
+ observation[-half:]
)
class CodeActAgent(Agent):
VERSION = '1.5'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.13463), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/OpenDevin/OpenDevin/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
### Plugin System
To make the CodeAct agent more powerful with only access to `bash` action space, CodeAct agent leverages OpenDevin's plugin system:
- [Jupyter plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/jupyter): for IPython execution via bash command
- [SWE-agent tool plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/swe_agent_commands): Powerful bash command line tools for software development tasks introduced by [swe-agent](https://github.com/princeton-nlp/swe-agent).
### Demo
https://github.com/OpenDevin/OpenDevin/assets/38853559/f592a192-e86c-4f48-ad31-d69282d5f6ac
*Example of CodeActAgent with `gpt-4-turbo-2024-04-09` performing a data science task (linear regression)*
### Work-in-progress & Next step
[] Support web-browsing
[] Complete the workflow for CodeAct agent to submit Github PRs
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions
# and it need to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
jupyter_kernel_init_code: str = 'from agentskills import *'
system_message: str = (
f'{SYSTEM_PREFIX}\n{GITHUB_MESSAGE}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
if ENABLE_GITHUB
else f'{SYSTEM_PREFIX}\n\n{COMMAND_DOCS}\n\n{SYSTEM_SUFFIX}'
)
def __init__(
self,
llm: LLM,
) -> None:
"""
Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm)
self.reset()
def reset(self) -> None:
"""
Resets the CodeAct Agent.
"""
super().reset()
def step(self, state: State) -> Action:
"""
Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info and background commands
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- BrowseInteractiveAction(browsergym_command) - BrowserGym commands to run
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
messages: list[dict[str, str]] = [
{'role': 'system', 'content': self.system_message},
{
'role': 'user',
'content': f"Here is an example of how you can interact with the environment for task solving:\n{EXAMPLES}\n\nNOW, LET'S START!",
},
]
for prev_action, obs in state.history:
action_message = get_action_message(prev_action)
if action_message:
messages.append(action_message)
obs_message = get_observation_message(obs)
if obs_message:
messages.append(obs_message)
latest_user_message = [m for m in messages if m['role'] == 'user'][-1]
if latest_user_message:
if latest_user_message['content'].strip() == '/exit':
return AgentFinishAction()
latest_user_message['content'] += (
f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task.'
)
response = self.llm.do_completion(
messages=messages,
stop=[
'</execute_ipython>',
'</execute_bash>',
'</execute_browse>',
],
temperature=0.0,
)
action_str: str = parse_response(response)
state.num_of_chars += sum(
len(message['content']) for message in messages
) + len(action_str)
if finish_command := re.search(r'<finish>.*</finish>', action_str, re.DOTALL):
thought = action_str.replace(finish_command.group(0), '').strip()
return AgentFinishAction(thought=thought)
if bash_command := re.search(
r'<execute_bash>(.*?)</execute_bash>', action_str, re.DOTALL
):
# remove the command from the action string to get thought
thought = action_str.replace(bash_command.group(0), '').strip()
# a command was found
command_group = bash_command.group(1).strip()
if command_group.strip() == 'exit':
return AgentFinishAction()
return CmdRunAction(command=command_group, thought=thought)
elif python_code := re.search(
r'<execute_ipython>(.*?)</execute_ipython>', action_str, re.DOTALL
):
# a code block was found
code_group = python_code.group(1).strip()
thought = action_str.replace(python_code.group(0), '').strip()
return IPythonRunCellAction(
code=code_group,
thought=thought,
kernel_init_code=self.jupyter_kernel_init_code,
)
elif browse_command := re.search(
r'<execute_browse>(.*)</execute_browse>', action_str, re.DOTALL
):
# BrowserGym actions was found
browse_actions = browse_command.group(1).strip()
thought = action_str.replace(browse_command.group(0), '').strip()
return BrowseInteractiveAction(
browser_actions=browse_actions, thought=thought
)
else:
# We assume the LLM is GOOD enough that when it returns pure natural language
# it want to talk to the user
return MessageAction(content=action_str, wait_for_response=True)
def search_memory(self, query: str) -> list[str]:
raise NotImplementedError('Implement this abstract method')