Jirka Borovec 0c2ebfd6e1
Ruff: use I rule for isort (#1410)
Ruff: use I rule for isort
2024-04-29 15:41:58 -07:00

51 lines
1.8 KiB
Python

from typing import List
from opendevin.action import Action, AgentFinishAction
from opendevin.agent import Agent
from opendevin.llm.llm import LLM
from opendevin.state import State
from .prompt import get_prompt, parse_response
class PlannerAgent(Agent):
"""
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
"""
def __init__(self, llm: LLM):
"""
Initialize the Planner Agent with an LLM
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm)
def step(self, state: State) -> Action:
"""
Checks to see if current step is completed, returns AgentFinishAction if True.
Otherwise, creates a plan prompt and sends to model for inference, returning the result as the next action.
Parameters:
- state (State): The current state given the previous actions and observations
Returns:
- AgentFinishAction: If the last state was 'completed', 'verified', or 'abandoned'
- Action: The next action to take based on llm response
"""
if state.plan.task.state in ['completed', 'verified', 'abandoned']:
return AgentFinishAction()
prompt = get_prompt(state.plan, state.history)
messages = [{'content': prompt, 'role': 'user'}]
resp = self.llm.completion(messages=messages)
action_resp = resp['choices'][0]['message']['content']
state.num_of_chars += len(prompt) + len(action_resp)
action = parse_response(action_resp)
return action
def search_memory(self, query: str) -> List[str]:
return []