mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
51 lines
1.8 KiB
Python
51 lines
1.8 KiB
Python
from typing import List
|
|
|
|
from opendevin.action import Action, AgentFinishAction
|
|
from opendevin.agent import Agent
|
|
from opendevin.llm.llm import LLM
|
|
from opendevin.state import State
|
|
|
|
from .prompt import get_prompt, parse_response
|
|
|
|
|
|
class PlannerAgent(Agent):
|
|
"""
|
|
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
|
|
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
|
|
"""
|
|
|
|
def __init__(self, llm: LLM):
|
|
"""
|
|
Initialize the Planner Agent with an LLM
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm)
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""
|
|
Checks to see if current step is completed, returns AgentFinishAction if True.
|
|
Otherwise, creates a plan prompt and sends to model for inference, returning the result as the next action.
|
|
|
|
Parameters:
|
|
- state (State): The current state given the previous actions and observations
|
|
|
|
Returns:
|
|
- AgentFinishAction: If the last state was 'completed', 'verified', or 'abandoned'
|
|
- Action: The next action to take based on llm response
|
|
"""
|
|
|
|
if state.plan.task.state in ['completed', 'verified', 'abandoned']:
|
|
return AgentFinishAction()
|
|
prompt = get_prompt(state.plan, state.history)
|
|
messages = [{'content': prompt, 'role': 'user'}]
|
|
resp = self.llm.completion(messages=messages)
|
|
action_resp = resp['choices'][0]['message']['content']
|
|
state.num_of_chars += len(prompt) + len(action_resp)
|
|
action = parse_response(action_resp)
|
|
return action
|
|
|
|
def search_memory(self, query: str) -> List[str]:
|
|
return []
|