OpenHands/openhands/core/message_utils.py
2025-02-28 05:47:39 +08:00

420 lines
18 KiB
Python

from litellm import ModelResponse
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import ImageContent, Message, TextContent
from openhands.core.schema import ActionType
from openhands.events.action import (
Action,
AgentDelegateAction,
AgentFinishAction,
AgentThinkAction,
BrowseInteractiveAction,
BrowseURLAction,
CmdRunAction,
FileEditAction,
FileReadAction,
IPythonRunCellAction,
MessageAction,
)
from openhands.events.event import Event
from openhands.events.observation import (
AgentCondensationObservation,
AgentDelegateObservation,
AgentThinkObservation,
BrowserOutputObservation,
CmdOutputObservation,
FileEditObservation,
FileReadObservation,
IPythonRunCellObservation,
UserRejectObservation,
)
from openhands.events.observation.error import ErrorObservation
from openhands.events.observation.observation import Observation
from openhands.events.serialization.event import truncate_content
from openhands.llm.metrics import Metrics, TokenUsage
def events_to_messages(
events: list[Event],
max_message_chars: int | None = None,
vision_is_active: bool = False,
enable_som_visual_browsing: bool = False,
) -> list[Message]:
"""Converts a list of events into a list of messages that can be sent to the LLM.
Ensures that tool call actions are processed correctly in function calling mode.
Args:
events: A list of events to convert. Each event can be an Action or Observation.
max_message_chars: The maximum number of characters in the content of an event included in the prompt to the LLM.
Larger observations are truncated.
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included.
enable_som_visual_browsing: Whether to enable visual browsing for the SOM model.
"""
messages = []
pending_tool_call_action_messages: dict[str, Message] = {}
tool_call_id_to_message: dict[str, Message] = {}
for event in events:
# create a regular message from an event
if isinstance(event, Action):
messages_to_add = get_action_message(
action=event,
pending_tool_call_action_messages=pending_tool_call_action_messages,
vision_is_active=vision_is_active,
)
elif isinstance(event, Observation):
messages_to_add = get_observation_message(
obs=event,
tool_call_id_to_message=tool_call_id_to_message,
max_message_chars=max_message_chars,
vision_is_active=vision_is_active,
enable_som_visual_browsing=enable_som_visual_browsing,
)
else:
raise ValueError(f'Unknown event type: {type(event)}')
# Check pending tool call action messages and see if they are complete
_response_ids_to_remove = []
for (
response_id,
pending_message,
) in pending_tool_call_action_messages.items():
assert pending_message.tool_calls is not None, (
'Tool calls should NOT be None when function calling is enabled & the message is considered pending tool call. '
f'Pending message: {pending_message}'
)
if all(
tool_call.id in tool_call_id_to_message
for tool_call in pending_message.tool_calls
):
# If complete:
# -- 1. Add the message that **initiated** the tool calls
messages_to_add.append(pending_message)
# -- 2. Add the tool calls **results***
for tool_call in pending_message.tool_calls:
messages_to_add.append(tool_call_id_to_message[tool_call.id])
tool_call_id_to_message.pop(tool_call.id)
_response_ids_to_remove.append(response_id)
# Cleanup the processed pending tool messages
for response_id in _response_ids_to_remove:
pending_tool_call_action_messages.pop(response_id)
messages += messages_to_add
return messages
def get_action_message(
action: Action,
pending_tool_call_action_messages: dict[str, Message],
vision_is_active: bool = False,
) -> list[Message]:
"""Converts an action into a message format that can be sent to the LLM.
This method handles different types of actions and formats them appropriately:
1. For tool-based actions (AgentDelegate, CmdRun, IPythonRunCell, FileEdit) and agent-sourced AgentFinish:
- In function calling mode: Stores the LLM's response in pending_tool_call_action_messages
- In non-function calling mode: Creates a message with the action string
2. For MessageActions: Creates a message with the text content and optional image content
Args:
action: The action to convert. Can be one of:
- CmdRunAction: For executing bash commands
- IPythonRunCellAction: For running IPython code
- FileEditAction: For editing files
- FileReadAction: For reading files using openhands-aci commands
- BrowseInteractiveAction: For browsing the web
- AgentFinishAction: For ending the interaction
- MessageAction: For sending messages
pending_tool_call_action_messages: Dictionary mapping response IDs to their corresponding messages.
Used in function calling mode to track tool calls that are waiting for their results.
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included
Returns:
list[Message]: A list containing the formatted message(s) for the action.
May be empty if the action is handled as a tool call in function calling mode.
Note:
In function calling mode, tool-based actions are stored in pending_tool_call_action_messages
rather than being returned immediately. They will be processed later when all corresponding
tool call results are available.
"""
# create a regular message from an event
if isinstance(
action,
(
AgentDelegateAction,
IPythonRunCellAction,
FileEditAction,
FileReadAction,
BrowseInteractiveAction,
BrowseURLAction,
AgentThinkAction,
),
) or (isinstance(action, CmdRunAction) and action.source == 'agent'):
tool_metadata = action.tool_call_metadata
assert tool_metadata is not None, (
'Tool call metadata should NOT be None when function calling is enabled. Action: '
+ str(action)
)
llm_response: ModelResponse = tool_metadata.model_response
assistant_msg = getattr(llm_response.choices[0], 'message')
# Add the LLM message (assistant) that initiated the tool calls
# (overwrites any previous message with the same response_id)
logger.debug(
f'Tool calls type: {type(assistant_msg.tool_calls)}, value: {assistant_msg.tool_calls}'
)
pending_tool_call_action_messages[llm_response.id] = Message(
role=getattr(assistant_msg, 'role', 'assistant'),
# tool call content SHOULD BE a string
content=[TextContent(text=assistant_msg.content or '')]
if assistant_msg.content is not None
else [],
tool_calls=assistant_msg.tool_calls,
)
return []
elif isinstance(action, AgentFinishAction):
role = 'user' if action.source == 'user' else 'assistant'
# when agent finishes, it has tool_metadata
# which has already been executed, and it doesn't have a response
# when the user finishes (/exit), we don't have tool_metadata
tool_metadata = action.tool_call_metadata
if tool_metadata is not None:
# take the response message from the tool call
assistant_msg = getattr(tool_metadata.model_response.choices[0], 'message')
content = assistant_msg.content or ''
# save content if any, to thought
if action.thought:
if action.thought != content:
action.thought += '\n' + content
else:
action.thought = content
# remove the tool call metadata
action.tool_call_metadata = None
if role not in ('user', 'system', 'assistant', 'tool'):
raise ValueError(f'Invalid role: {role}')
return [
Message(
role=role, # type: ignore[arg-type]
content=[TextContent(text=action.thought)],
)
]
elif isinstance(action, MessageAction):
role = 'user' if action.source == 'user' else 'assistant'
content = [TextContent(text=action.content or '')]
if vision_is_active and action.image_urls:
content.append(ImageContent(image_urls=action.image_urls))
if role not in ('user', 'system', 'assistant', 'tool'):
raise ValueError(f'Invalid role: {role}')
return [
Message(
role=role, # type: ignore[arg-type]
content=content,
)
]
elif isinstance(action, CmdRunAction) and action.source == 'user':
content = [TextContent(text=f'User executed the command:\n{action.command}')]
return [
Message(
role='user', # Always user for CmdRunAction
content=content,
)
]
return []
def get_observation_message(
obs: Observation,
tool_call_id_to_message: dict[str, Message],
max_message_chars: int | None = None,
vision_is_active: bool = False,
enable_som_visual_browsing: bool = False,
) -> list[Message]:
"""Converts an observation into a message format that can be sent to the LLM.
This method handles different types of observations and formats them appropriately:
- CmdOutputObservation: Formats command execution results with exit codes
- IPythonRunCellObservation: Formats IPython cell execution results, replacing base64 images
- FileEditObservation: Formats file editing results
- FileReadObservation: Formats file reading results from openhands-aci
- AgentDelegateObservation: Formats results from delegated agent tasks
- ErrorObservation: Formats error messages from failed actions
- UserRejectObservation: Formats user rejection messages
In function calling mode, observations with tool_call_metadata are stored in
tool_call_id_to_message for later processing instead of being returned immediately.
Args:
obs: The observation to convert
tool_call_id_to_message: Dictionary mapping tool call IDs to their corresponding messages (used in function calling mode)
max_message_chars: The maximum number of characters in the content of an observation included in the prompt to the LLM
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included
enable_som_visual_browsing: Whether to enable visual browsing for the SOM model
Returns:
list[Message]: A list containing the formatted message(s) for the observation.
May be empty if the observation is handled as a tool response in function calling mode.
Raises:
ValueError: If the observation type is unknown
"""
message: Message
if isinstance(obs, CmdOutputObservation):
# if it doesn't have tool call metadata, it was triggered by a user action
if obs.tool_call_metadata is None:
text = truncate_content(
f'\nObserved result of command executed by user:\n{obs.to_agent_observation()}',
max_message_chars,
)
else:
text = truncate_content(obs.to_agent_observation(), max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, IPythonRunCellObservation):
text = obs.content
# replace base64 images with a placeholder
splitted = text.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
text = '\n'.join(splitted)
text = truncate_content(text, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileEditObservation):
text = truncate_content(str(obs), max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileReadObservation):
message = Message(
role='user', content=[TextContent(text=obs.content)]
) # Content is already truncated by openhands-aci
elif isinstance(obs, BrowserOutputObservation):
text = obs.get_agent_obs_text()
if (
obs.trigger_by_action == ActionType.BROWSE_INTERACTIVE
and obs.set_of_marks is not None
and len(obs.set_of_marks) > 0
and enable_som_visual_browsing
and vision_is_active
):
text += 'Image: Current webpage screenshot (Note that only visible portion of webpage is present in the screenshot. You may need to scroll to view the remaining portion of the web-page.)\n'
message = Message(
role='user',
content=[
TextContent(text=text),
ImageContent(image_urls=[obs.set_of_marks]),
],
)
else:
message = Message(
role='user',
content=[TextContent(text=text)],
)
elif isinstance(obs, AgentDelegateObservation):
text = truncate_content(
obs.outputs['content'] if 'content' in obs.outputs else '',
max_message_chars,
)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentThinkObservation):
text = truncate_content(obs.content, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, ErrorObservation):
text = truncate_content(obs.content, max_message_chars)
text += '\n[Error occurred in processing last action]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, UserRejectObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += '\n[Last action has been rejected by the user]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentCondensationObservation):
text = truncate_content(obs.content, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
else:
# If an observation message is not returned, it will cause an error
# when the LLM tries to return the next message
raise ValueError(f'Unknown observation type: {type(obs)}')
# Update the message as tool response properly
if (tool_call_metadata := obs.tool_call_metadata) is not None:
tool_call_id_to_message[tool_call_metadata.tool_call_id] = Message(
role='tool',
content=message.content,
tool_call_id=tool_call_metadata.tool_call_id,
name=tool_call_metadata.function_name,
)
# No need to return the observation message
# because it will be added by get_action_message when all the corresponding
# tool calls in the SAME request are processed
return []
return [message]
def apply_prompt_caching(messages: list[Message]) -> None:
"""Applies caching breakpoints to the messages.
For new Anthropic API, we only need to mark the last user or tool message as cacheable.
"""
# NOTE: this is only needed for anthropic
for message in reversed(messages):
if message.role in ('user', 'tool'):
message.content[
-1
].cache_prompt = True # Last item inside the message content
break
def get_token_usage_for_event(event: Event, metrics: Metrics) -> TokenUsage | None:
"""
Returns at most one token usage record for the `model_response.id` in this event's
`tool_call_metadata`.
If no response_id is found, or none match in metrics.token_usages, returns None.
"""
if event.tool_call_metadata and event.tool_call_metadata.model_response:
response_id = event.tool_call_metadata.model_response.get('id')
if response_id:
return next(
(
usage
for usage in metrics.token_usages
if usage.response_id == response_id
),
None,
)
return None
def get_token_usage_for_event_id(
events: list[Event], event_id: int, metrics: Metrics
) -> TokenUsage | None:
"""
Starting from the event with .id == event_id and moving backwards in `events`,
find the first TokenUsage record (if any) associated with a response_id from
tool_call_metadata.model_response.id.
Returns the first match found, or None if none is found.
"""
# find the index of the event with the given id
idx = next((i for i, e in enumerate(events) if e.id == event_id), None)
if idx is None:
return None
# search backward from idx down to 0
for i in range(idx, -1, -1):
usage = get_token_usage_for_event(events[i], metrics)
if usage is not None:
return usage
return None