mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
49 lines
1.8 KiB
Python
49 lines
1.8 KiB
Python
from agenthub.planner_agent.response_parser import PlannerResponseParser
|
|
from opendevin.controller.agent import Agent
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.events.action import Action, AgentFinishAction
|
|
from opendevin.llm.llm import LLM
|
|
from opendevin.runtime.tools import RuntimeTool
|
|
|
|
from .prompt import get_prompt
|
|
|
|
|
|
class PlannerAgent(Agent):
|
|
VERSION = '1.0'
|
|
"""
|
|
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
|
|
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
|
|
"""
|
|
runtime_tools: list[RuntimeTool] = [RuntimeTool.BROWSER]
|
|
response_parser = PlannerResponseParser()
|
|
|
|
def __init__(self, llm: LLM):
|
|
"""Initialize the Planner Agent with an LLM
|
|
|
|
Parameters:
|
|
- llm (LLM): The llm to be used by this agent
|
|
"""
|
|
super().__init__(llm)
|
|
|
|
def step(self, state: State) -> Action:
|
|
"""Checks to see if current step is completed, returns AgentFinishAction if True.
|
|
Otherwise, creates a plan prompt and sends to model for inference, returning the result as the next action.
|
|
|
|
Parameters:
|
|
- state (State): The current state given the previous actions and observations
|
|
|
|
Returns:
|
|
- AgentFinishAction: If the last state was 'completed', 'verified', or 'abandoned'
|
|
- Action: The next action to take based on llm response
|
|
"""
|
|
if state.root_task.state in [
|
|
'completed',
|
|
'verified',
|
|
'abandoned',
|
|
]:
|
|
return AgentFinishAction()
|
|
prompt = get_prompt(state, self.llm.config.max_message_chars)
|
|
messages = [{'content': prompt, 'role': 'user'}]
|
|
resp = self.llm.completion(messages=messages)
|
|
return self.response_parser.parse(resp)
|