Xingyao Wang 31b244f95e
[Refactor, Evaluation] Refactor and clean up evaluation harness to remove global config and use EventStreamRuntime (#3230)
* move multi-line bash tests to test_runtime;
support multi-line bash for esruntime;

* add testcase to handle PS2 prompt

* use bashlex for bash parsing to handle multi-line commands;
add testcases for multi-line commands

* revert ghcr runtime change

* Apply stash

* fix run as other user;
make test async;

* fix test runtime for run as od

* add run-as-devin to all the runtime tests

* handle the case when username is root

* move all run-as-devin tests from sandbox;
only tests a few cases on different user to save time;

* move over multi-line echo related tests to test_runtime

* fix user-specific jupyter by fixing the pypoetry virtualenv folder

* make plugin's init async;
chdir at initialization of jupyter plugin;
move ipy simple testcase to test runtime;

* support agentskills import in
move tests for jupyter pwd tests;
overload `add_env_vars` for EventStreamRuntime to update env var also in Jupyter;
make agentskills read env var lazily, in case env var is updated;

* fix ServerRuntime agentskills issue

* move agnostic image test to test_runtime

* merge runtime tests in CI

* fix enable auto lint as env var

* update warning message

* update warning message

* test for different container images

* change parsing output as debug

* add exception handling for update_pwd_decorator

* fix unit test indentation

* add plugins as default input to Runtime class;
remove init_sandbox_plugins;
implement add_env_var (include jupyter) in the base class;

* fix server runtime auto lint

* Revert "add exception handling for update_pwd_decorator"

This reverts commit 2b668b1506e02145cb8f87e321aad62febca3d50.

* tries to print debugging info for agentskills

* explictly setting uid (try fix permission issue)

* Revert "tries to print debugging info for agentskills"

This reverts commit 8be4c86756f0e3fc62957b327ba2ac4999c419de.

* set sandbox user id during testing to hopefully fix the permission issue

* add browser tools for server runtime

* try to debug for old pwd

* update debug cmd

* only test agnostic runtime when TEST_RUNTIME is Server

* fix temp dir mkdir

* load TEST_RUNTIME at the beginning

* remove ipython tests

* only log to file when DEBUG

* default logging to project root

* temporarily remove log to file

* fix LLM logger dir

* fix logger

* make set pwd an optional aux action

* fix prev pwd

* fix infinity recursion

* simplify

* do not import the whole od library to avoid logger folder by jupyter

* fix browsing

* increase timeout

* attempt to fix agentskills yet again

* clean up in testcases, since CI maybe run as non-root

* add _cause attribute for event.id

* remove parent

* add a bunch of debugging statement again for CI :(

* fix temp_dir fixture

* change all temp dir to follow pytest's tmp_path_factory

* remove extra bracket

* clean up error printing a bit

* jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization

* jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization

* add typing for tmp dir fixture

* clear the directory before running the test to avoid weird CI temp dir

* remove agnostic test case for server runtime

* Revert "remove agnostic test case for server runtime"

This reverts commit 30e2181c3fc1410e69596c2dcd06be01f1d016b3.

* disable agnostic tests in CI

* fix test

* make sure plugin arg is not passed when no plugin is specified;
remove redundant on_event function;

* move mock prompt

* rename runtime

* remove extra logging

* refactor run_controller's interface;
support multiple runtime for integration test;
filter out hostname for prompt

* uncomment other tests

* pass the right runtime to controller

* log runtime when start

* uncomment tests

* improve symbol filters

* add intergration test prompts that seemd ok

* add integration test workflow

* add python3 to default ubuntu image

* symlink python and fix permission to jupyter pip

* add retry for jupyter execute server

* fix jupyter pip install;
add post-process for jupyter pip install;
simplify init by add agent_skills path to PYTHONPATH;
add testcase to tests jupyter pip install;

* fix bug

* use ubuntu:22.04 for eventstream integration tests

* add todo

* update testcase

* remove redundant code

* fix unit test

* reduce dependency for runtime

* try making llama-index an optional dependency that's not installed by default

* remove pip install since it seemd not needed

* log ipython execution;
await write message since it returns a future

* update ipy testcase

* do not install llama-index in CI

* do not install llama-index in the app docker as well

* set sandbox container image in the integration test script

* log plugins & env var for runtime

* update conftest for sha256

* add git

* remove all non-alphanumeric chalracters

* add working ipy module tests!

* default to use host network

* remove is_async from browser to make thing a little more reliable;
retry loading browser when error;

* add sleep to wait a bit for http server

* kill http server before regenerate browsing tests

* fix browsing

* only set sandbox container image if undefined

* skip empty config value

* update evaluation to use the latest run_controller

* revert logger in execute_server to be compatible with server runtime

* revert logging level to fix jupyter

* set logger level

* revert the logging

* chmod for workspace to fix permission

* support getting timeout from action

* update test for server runtime

* try to fix file permission

* fix test_cmd_run_action_serialization_deserialization test (added timeout)

* poetry: pip 24.2, torch 2.2.2

* revert adding pip to pyproject.toml

* add build to dependencies in pyproject.toml

* forgot poetry lock --no-update

* fix a DelegatorAgent prompt_002.log (timeout)

* fix a DelegatorAgent prompt_003.log (timeout)

* couple more timeout attribs in prompt files

* some more prompt files

* prompts galore

* add clarification comment for timeout

* default timeout to config

* add assert

* update integraton tests for eventstream

* update integration tests

* fix timeout for action<->dict

* remove redundant on_event

* default to use instance image

* update run_controller interface

* add logging for copy

* refactor swe_bench for the new design

* fix action execution timeout

* updatelock

* remove build sandbox locally

* fix runtime

* use plain for-loop for single process

* remove extra print

* get swebench inference working

* print whole `test_result` dict

* got swebench patch post-process working

* update swe-bench evaluation readme

* refactor using shared reset_logger function

* move messy swebench prompt to a different file

* support the ability to specify whether to keep prompt

* support the ability to specify whether to keep prompt

* fix dockerfile

* fix import and remove unnecessary strip logic

* fix action serialization

* get agentbench running

* remove extra ls for agent bench

* fix agentbench metric

* factor out common documentation for eval

* update biocoder doc

* remove swe_env_box since it is no longer needed

* get biocoder working

* add func timeout for bird

* fix jupyter pwd with ~ as user name

* fix jupyter pwd with ~ as user name

* get bird working

* get browsing evaluation working

* make eda runnable

* fix id column

* fix eda run_infer

* unify eval output using a structured format;
make swebench coompatible with that format;
update client source code for every swebench run;
do not inject testcmd for swebench

* standardize existing benchs for the new eval output

* set update source code = true

* get gaia standardized

* fix gaia

* gorilla refactored but stuck at language.so to test

* refactor and make gpqa work

* refactor humanevalfix and get it working

* refactor logic reasoning and get it working

* refactor browser env so it works with eventstream runtime for eval

* add initial version of miniwob refactor

* fix browsergym environment

* get miniwob working!!

* allowing injecting additional dependency to OD runtime docker image

* allowing injecting additional dependency to OD runtime docker image

* support logic reasoning with pre-injected dependency

* get mint working

* update runtime build

* fix mint docker

* add test for keep_prompt;
add missing await close for some tests

* update integration tests for eventstream runtime

* fix integration tests for server runtime

* refactor ml bench and toolqa

* refactor webarena

* fix default factory

* Update run_infer.py

* add APIError to retry

* increase timeout for swebench

* make sure to hide api key when dump eval output

* update the behavior of put source code to put files instead of tarball

* add dishash to dependency

* sendintr when timeout

* fix dockerfile copy

* reduce timeout

* use dirhash to avoid repeat building for update source

* fix runtime_build testcase

* add dir_hash to docker build pipeline

* revert api error

* update poetry lock

* add retries for swebench run infer

* fix git patch

* update poetry lock

* adjust config order

* fix mount volumns

* enforce all eval to use "instance_id"

* remove file store from runtime

* make file_store public inside eventstream

* move the runtime logic inside `main` out

* support using async function for process_instance_fn

* refactor run_infer with the create_time

* fix file store

* Update evaluation/toolqa/utils.py

Co-authored-by: Graham Neubig <neubig@gmail.com>

* fix typo

---------

Co-authored-by: tobitege <tobitege@gmx.de>
Co-authored-by: super-dainiu <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: Graham Neubig <neubig@gmail.com>
2024-08-06 17:21:45 +00:00

290 lines
9.6 KiB
Python

import asyncio
import json
import logging
import multiprocessing as mp
import os
import pathlib
import subprocess
import time
from concurrent.futures import ProcessPoolExecutor
from typing import Any, Awaitable, Callable
import pandas as pd
from pydantic import BaseModel
from tqdm import tqdm
from opendevin.controller.state.state import State
from opendevin.core.config import LLMConfig
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.events.action import Action
from opendevin.events.action.message import MessageAction
class EvalMetadata(BaseModel):
agent_class: str
llm_config: LLMConfig
max_iterations: int
eval_output_dir: str
start_time: str
git_commit: str
dataset: str | None = None
data_split: str | None = None
details: dict[str, Any] | None = None
def model_dump_json(self, *args, **kwargs):
dumped = super().model_dump_json(*args, **kwargs)
dumped_dict = json.loads(dumped)
logger.debug(f'Dumped metadata: {dumped_dict}')
# avoid leaking sensitive information
dumped_dict['llm_config'] = self.llm_config.to_safe_dict()
return json.dumps(dumped_dict)
class EvalOutput(BaseModel):
# NOTE: User-specified
instance_id: str
instruction: str
# output of the evaluation
# store anything that is needed for the score calculation
test_result: dict[str, Any]
# Interaction info
metadata: EvalMetadata
history: list[tuple[dict[str, Any], dict[str, Any]]]
metrics: dict[str, Any]
error: str | None = None
# Optionally save the input test instance
instance: dict[str, Any] | None = None
def model_dump_json(self, *args, **kwargs):
dumped = super().model_dump_json(*args, **kwargs)
dumped_dict = json.loads(dumped)
# Apply custom serialization for metadata (to avoid leaking sensitive information)
dumped_dict['metadata'] = json.loads(self.metadata.model_dump_json())
return json.dumps(dumped_dict)
def codeact_user_response(
state: State,
encapsulate_solution: bool = False,
try_parse: Callable[[Action], str] | None = None,
) -> str:
encaps_str = (
(
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
)
if encapsulate_solution
else ''
)
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'If you think you have solved the task, please first send your answer to user through message and then <execute_bash> exit </execute_bash>.\n'
f'{encaps_str}'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n'
)
if state.history:
# check if the last action has an answer, if so, early exit
if try_parse is not None:
last_action = state.history.get_last_action()
ans = try_parse(last_action)
if ans is not None:
return '/exit'
# check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up
user_msgs = [
event
for event in state.history.get_events()
if isinstance(event, MessageAction) and event.source == 'user'
]
if len(user_msgs) >= 2:
# let the agent know that it can give up when it has tried 3 times
return (
msg
+ 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
)
return msg
def cleanup():
print('Cleaning up child processes...')
for process in mp.active_children():
print(f'Terminating child process: {process.name}')
process.terminate()
process.join()
def make_metadata(
llm_config: LLMConfig,
dataset_name: str,
agent_class: str,
max_iterations: int,
eval_note: str | None,
eval_output_dir: str,
data_split: str | None = None,
details: dict[str, Any] | None = None,
) -> EvalMetadata:
model_name = llm_config.model.split('/')[-1]
eval_note = f'_N_{eval_note}' if eval_note else ''
eval_output_path = os.path.join(
eval_output_dir,
dataset_name,
agent_class,
f'{model_name}_maxiter_{max_iterations}{eval_note}',
)
pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True)
pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir(
parents=True, exist_ok=True
)
logger.info(f'Using evaluation output directory: {eval_output_path}')
metadata = EvalMetadata(
agent_class=agent_class,
llm_config=llm_config,
max_iterations=max_iterations,
eval_output_dir=eval_output_path,
start_time=time.strftime('%Y-%m-%d %H:%M:%S'),
git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD'])
.decode('utf-8')
.strip(),
dataset=dataset_name,
data_split=data_split,
details=details,
)
metadata_json = metadata.model_dump_json()
logger.info(f'Metadata: {metadata_json}')
with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f:
f.write(metadata_json)
return metadata
def prepare_dataset(dataset: pd.DataFrame, output_file: str, eval_n_limit: int):
assert (
'instance_id' in dataset.columns
), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column."
id_column = 'instance_id'
logger.info(f'Writing evaluation output to {output_file}')
finished_ids = set()
if os.path.exists(output_file):
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
finished_ids.add(data[id_column])
logger.warning(
f'Output file {output_file} already exists. Loaded {len(finished_ids)} finished instances.'
)
if eval_n_limit:
dataset = dataset.head(eval_n_limit)
logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
new_dataset = [
instance
for _, instance in dataset.iterrows()
if instance[id_column] not in finished_ids
]
logger.info(
f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}'
)
return pd.DataFrame(new_dataset)
async def run_evaluation(
dataset: pd.DataFrame,
metadata: EvalMetadata,
output_file: str,
num_workers: int,
process_instance_func: Callable[
[pd.Series, EvalMetadata, bool], Awaitable[EvalOutput]
],
):
use_multiprocessing = num_workers > 1
logger.info(
f'Evaluation started with Agent {metadata.agent_class}, '
f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.'
)
pbar = tqdm(total=len(dataset))
output_fp = open(output_file, 'a')
async def update_progress(future):
pbar.update(1)
output: EvalOutput = await future if use_multiprocessing else future
pbar.set_description(f'Instance {output.instance_id}')
pbar.set_postfix_str(f'Test Result: {output.test_result}')
logger.info(
f'Finished evaluation for instance {output.instance_id}: {output.test_result}'
)
output_fp.write(json.dumps(output.model_dump()) + '\n')
output_fp.flush()
try:
if use_multiprocessing:
with ProcessPoolExecutor(num_workers) as executor:
loop = asyncio.get_event_loop()
futures = []
for _, instance in dataset.iterrows():
future = loop.run_in_executor(
executor,
process_instance_func,
instance,
metadata,
bool(num_workers > 1),
)
futures.append(update_progress(future))
await asyncio.gather(*futures)
# Use plain for loop for single process for easier debugging
else:
assert num_workers == 1
for _, instance in dataset.iterrows():
output = await process_instance_func(instance, metadata, False)
await update_progress(output)
except KeyboardInterrupt:
print('KeyboardInterrupt received. Cleaning up...')
cleanup()
output_fp.close()
logger.info('Evaluation finished.')
def reset_logger_for_multiprocessing(
logger: logging.Logger, instance_id: str, log_dir: str
):
"""Reset the logger for multiprocessing.
Save logs to a separate file for each process, instead of trying to write to the
same file/console from multiple processes.
"""
# Set up logger
log_file = os.path.join(
log_dir,
f'instance_{instance_id}.log',
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance_id}.\n'
f'Hint: run "tail -f {log_file}" to see live logs in a separate shell'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
os.makedirs(os.path.dirname(log_file), exist_ok=True)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)