mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* move multi-line bash tests to test_runtime; support multi-line bash for esruntime; * add testcase to handle PS2 prompt * use bashlex for bash parsing to handle multi-line commands; add testcases for multi-line commands * revert ghcr runtime change * Apply stash * fix run as other user; make test async; * fix test runtime for run as od * add run-as-devin to all the runtime tests * handle the case when username is root * move all run-as-devin tests from sandbox; only tests a few cases on different user to save time; * move over multi-line echo related tests to test_runtime * fix user-specific jupyter by fixing the pypoetry virtualenv folder * make plugin's init async; chdir at initialization of jupyter plugin; move ipy simple testcase to test runtime; * support agentskills import in move tests for jupyter pwd tests; overload `add_env_vars` for EventStreamRuntime to update env var also in Jupyter; make agentskills read env var lazily, in case env var is updated; * fix ServerRuntime agentskills issue * move agnostic image test to test_runtime * merge runtime tests in CI * fix enable auto lint as env var * update warning message * update warning message * test for different container images * change parsing output as debug * add exception handling for update_pwd_decorator * fix unit test indentation * add plugins as default input to Runtime class; remove init_sandbox_plugins; implement add_env_var (include jupyter) in the base class; * fix server runtime auto lint * Revert "add exception handling for update_pwd_decorator" This reverts commit 2b668b1506e02145cb8f87e321aad62febca3d50. * tries to print debugging info for agentskills * explictly setting uid (try fix permission issue) * Revert "tries to print debugging info for agentskills" This reverts commit 8be4c86756f0e3fc62957b327ba2ac4999c419de. * set sandbox user id during testing to hopefully fix the permission issue * add browser tools for server runtime * try to debug for old pwd * update debug cmd * only test agnostic runtime when TEST_RUNTIME is Server * fix temp dir mkdir * load TEST_RUNTIME at the beginning * remove ipython tests * only log to file when DEBUG * default logging to project root * temporarily remove log to file * fix LLM logger dir * fix logger * make set pwd an optional aux action * fix prev pwd * fix infinity recursion * simplify * do not import the whole od library to avoid logger folder by jupyter * fix browsing * increase timeout * attempt to fix agentskills yet again * clean up in testcases, since CI maybe run as non-root * add _cause attribute for event.id * remove parent * add a bunch of debugging statement again for CI :( * fix temp_dir fixture * change all temp dir to follow pytest's tmp_path_factory * remove extra bracket * clean up error printing a bit * jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization * jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization * add typing for tmp dir fixture * clear the directory before running the test to avoid weird CI temp dir * remove agnostic test case for server runtime * Revert "remove agnostic test case for server runtime" This reverts commit 30e2181c3fc1410e69596c2dcd06be01f1d016b3. * disable agnostic tests in CI * fix test * make sure plugin arg is not passed when no plugin is specified; remove redundant on_event function; * move mock prompt * rename runtime * remove extra logging * refactor run_controller's interface; support multiple runtime for integration test; filter out hostname for prompt * uncomment other tests * pass the right runtime to controller * log runtime when start * uncomment tests * improve symbol filters * add intergration test prompts that seemd ok * add integration test workflow * add python3 to default ubuntu image * symlink python and fix permission to jupyter pip * add retry for jupyter execute server * fix jupyter pip install; add post-process for jupyter pip install; simplify init by add agent_skills path to PYTHONPATH; add testcase to tests jupyter pip install; * fix bug * use ubuntu:22.04 for eventstream integration tests * add todo * update testcase * remove redundant code * fix unit test * reduce dependency for runtime * try making llama-index an optional dependency that's not installed by default * remove pip install since it seemd not needed * log ipython execution; await write message since it returns a future * update ipy testcase * do not install llama-index in CI * do not install llama-index in the app docker as well * set sandbox container image in the integration test script * log plugins & env var for runtime * update conftest for sha256 * add git * remove all non-alphanumeric chalracters * add working ipy module tests! * default to use host network * remove is_async from browser to make thing a little more reliable; retry loading browser when error; * add sleep to wait a bit for http server * kill http server before regenerate browsing tests * fix browsing * only set sandbox container image if undefined * skip empty config value * update evaluation to use the latest run_controller * revert logger in execute_server to be compatible with server runtime * revert logging level to fix jupyter * set logger level * revert the logging * chmod for workspace to fix permission * support getting timeout from action * update test for server runtime * try to fix file permission * fix test_cmd_run_action_serialization_deserialization test (added timeout) * poetry: pip 24.2, torch 2.2.2 * revert adding pip to pyproject.toml * add build to dependencies in pyproject.toml * forgot poetry lock --no-update * fix a DelegatorAgent prompt_002.log (timeout) * fix a DelegatorAgent prompt_003.log (timeout) * couple more timeout attribs in prompt files * some more prompt files * prompts galore * add clarification comment for timeout * default timeout to config * add assert * update integraton tests for eventstream * update integration tests * fix timeout for action<->dict * remove redundant on_event * default to use instance image * update run_controller interface * add logging for copy * refactor swe_bench for the new design * fix action execution timeout * updatelock * remove build sandbox locally * fix runtime * use plain for-loop for single process * remove extra print * get swebench inference working * print whole `test_result` dict * got swebench patch post-process working * update swe-bench evaluation readme * refactor using shared reset_logger function * move messy swebench prompt to a different file * support the ability to specify whether to keep prompt * support the ability to specify whether to keep prompt * fix dockerfile * fix import and remove unnecessary strip logic * fix action serialization * get agentbench running * remove extra ls for agent bench * fix agentbench metric * factor out common documentation for eval * update biocoder doc * remove swe_env_box since it is no longer needed * get biocoder working * add func timeout for bird * fix jupyter pwd with ~ as user name * fix jupyter pwd with ~ as user name * get bird working * get browsing evaluation working * make eda runnable * fix id column * fix eda run_infer * unify eval output using a structured format; make swebench coompatible with that format; update client source code for every swebench run; do not inject testcmd for swebench * standardize existing benchs for the new eval output * set update source code = true * get gaia standardized * fix gaia * gorilla refactored but stuck at language.so to test * refactor and make gpqa work * refactor humanevalfix and get it working * refactor logic reasoning and get it working * refactor browser env so it works with eventstream runtime for eval * add initial version of miniwob refactor * fix browsergym environment * get miniwob working!! * allowing injecting additional dependency to OD runtime docker image * allowing injecting additional dependency to OD runtime docker image * support logic reasoning with pre-injected dependency * get mint working * update runtime build * fix mint docker * add test for keep_prompt; add missing await close for some tests * update integration tests for eventstream runtime * fix integration tests for server runtime * refactor ml bench and toolqa * refactor webarena * fix default factory * Update run_infer.py * add APIError to retry * increase timeout for swebench * make sure to hide api key when dump eval output * update the behavior of put source code to put files instead of tarball * add dishash to dependency * sendintr when timeout * fix dockerfile copy * reduce timeout * use dirhash to avoid repeat building for update source * fix runtime_build testcase * add dir_hash to docker build pipeline * revert api error * update poetry lock * add retries for swebench run infer * fix git patch * update poetry lock * adjust config order * fix mount volumns * enforce all eval to use "instance_id" * remove file store from runtime * make file_store public inside eventstream * move the runtime logic inside `main` out * support using async function for process_instance_fn * refactor run_infer with the create_time * fix file store * Update evaluation/toolqa/utils.py Co-authored-by: Graham Neubig <neubig@gmail.com> * fix typo --------- Co-authored-by: tobitege <tobitege@gmx.de> Co-authored-by: super-dainiu <78588128+super-dainiu@users.noreply.github.com> Co-authored-by: Graham Neubig <neubig@gmail.com>
290 lines
9.6 KiB
Python
290 lines
9.6 KiB
Python
import asyncio
|
|
import json
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import pathlib
|
|
import subprocess
|
|
import time
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
from typing import Any, Awaitable, Callable
|
|
|
|
import pandas as pd
|
|
from pydantic import BaseModel
|
|
from tqdm import tqdm
|
|
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import LLMConfig
|
|
from opendevin.core.logger import get_console_handler
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.events.action import Action
|
|
from opendevin.events.action.message import MessageAction
|
|
|
|
|
|
class EvalMetadata(BaseModel):
|
|
agent_class: str
|
|
llm_config: LLMConfig
|
|
max_iterations: int
|
|
eval_output_dir: str
|
|
start_time: str
|
|
git_commit: str
|
|
dataset: str | None = None
|
|
data_split: str | None = None
|
|
details: dict[str, Any] | None = None
|
|
|
|
def model_dump_json(self, *args, **kwargs):
|
|
dumped = super().model_dump_json(*args, **kwargs)
|
|
dumped_dict = json.loads(dumped)
|
|
logger.debug(f'Dumped metadata: {dumped_dict}')
|
|
# avoid leaking sensitive information
|
|
dumped_dict['llm_config'] = self.llm_config.to_safe_dict()
|
|
return json.dumps(dumped_dict)
|
|
|
|
|
|
class EvalOutput(BaseModel):
|
|
# NOTE: User-specified
|
|
instance_id: str
|
|
instruction: str
|
|
# output of the evaluation
|
|
# store anything that is needed for the score calculation
|
|
test_result: dict[str, Any]
|
|
|
|
# Interaction info
|
|
metadata: EvalMetadata
|
|
history: list[tuple[dict[str, Any], dict[str, Any]]]
|
|
metrics: dict[str, Any]
|
|
error: str | None = None
|
|
|
|
# Optionally save the input test instance
|
|
instance: dict[str, Any] | None = None
|
|
|
|
def model_dump_json(self, *args, **kwargs):
|
|
dumped = super().model_dump_json(*args, **kwargs)
|
|
dumped_dict = json.loads(dumped)
|
|
# Apply custom serialization for metadata (to avoid leaking sensitive information)
|
|
dumped_dict['metadata'] = json.loads(self.metadata.model_dump_json())
|
|
return json.dumps(dumped_dict)
|
|
|
|
|
|
def codeact_user_response(
|
|
state: State,
|
|
encapsulate_solution: bool = False,
|
|
try_parse: Callable[[Action], str] | None = None,
|
|
) -> str:
|
|
encaps_str = (
|
|
(
|
|
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
|
|
'For example: The answer to the question is <solution> 42 </solution>.\n'
|
|
)
|
|
if encapsulate_solution
|
|
else ''
|
|
)
|
|
msg = (
|
|
'Please continue working on the task on whatever approach you think is suitable.\n'
|
|
'If you think you have solved the task, please first send your answer to user through message and then <execute_bash> exit </execute_bash>.\n'
|
|
f'{encaps_str}'
|
|
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n'
|
|
)
|
|
|
|
if state.history:
|
|
# check if the last action has an answer, if so, early exit
|
|
if try_parse is not None:
|
|
last_action = state.history.get_last_action()
|
|
ans = try_parse(last_action)
|
|
if ans is not None:
|
|
return '/exit'
|
|
|
|
# check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up
|
|
user_msgs = [
|
|
event
|
|
for event in state.history.get_events()
|
|
if isinstance(event, MessageAction) and event.source == 'user'
|
|
]
|
|
if len(user_msgs) >= 2:
|
|
# let the agent know that it can give up when it has tried 3 times
|
|
return (
|
|
msg
|
|
+ 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
|
|
)
|
|
return msg
|
|
|
|
|
|
def cleanup():
|
|
print('Cleaning up child processes...')
|
|
for process in mp.active_children():
|
|
print(f'Terminating child process: {process.name}')
|
|
process.terminate()
|
|
process.join()
|
|
|
|
|
|
def make_metadata(
|
|
llm_config: LLMConfig,
|
|
dataset_name: str,
|
|
agent_class: str,
|
|
max_iterations: int,
|
|
eval_note: str | None,
|
|
eval_output_dir: str,
|
|
data_split: str | None = None,
|
|
details: dict[str, Any] | None = None,
|
|
) -> EvalMetadata:
|
|
model_name = llm_config.model.split('/')[-1]
|
|
eval_note = f'_N_{eval_note}' if eval_note else ''
|
|
|
|
eval_output_path = os.path.join(
|
|
eval_output_dir,
|
|
dataset_name,
|
|
agent_class,
|
|
f'{model_name}_maxiter_{max_iterations}{eval_note}',
|
|
)
|
|
|
|
pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True)
|
|
pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir(
|
|
parents=True, exist_ok=True
|
|
)
|
|
logger.info(f'Using evaluation output directory: {eval_output_path}')
|
|
|
|
metadata = EvalMetadata(
|
|
agent_class=agent_class,
|
|
llm_config=llm_config,
|
|
max_iterations=max_iterations,
|
|
eval_output_dir=eval_output_path,
|
|
start_time=time.strftime('%Y-%m-%d %H:%M:%S'),
|
|
git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD'])
|
|
.decode('utf-8')
|
|
.strip(),
|
|
dataset=dataset_name,
|
|
data_split=data_split,
|
|
details=details,
|
|
)
|
|
metadata_json = metadata.model_dump_json()
|
|
logger.info(f'Metadata: {metadata_json}')
|
|
with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f:
|
|
f.write(metadata_json)
|
|
|
|
return metadata
|
|
|
|
|
|
def prepare_dataset(dataset: pd.DataFrame, output_file: str, eval_n_limit: int):
|
|
assert (
|
|
'instance_id' in dataset.columns
|
|
), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column."
|
|
id_column = 'instance_id'
|
|
logger.info(f'Writing evaluation output to {output_file}')
|
|
finished_ids = set()
|
|
if os.path.exists(output_file):
|
|
with open(output_file, 'r') as f:
|
|
for line in f:
|
|
data = json.loads(line)
|
|
finished_ids.add(data[id_column])
|
|
logger.warning(
|
|
f'Output file {output_file} already exists. Loaded {len(finished_ids)} finished instances.'
|
|
)
|
|
|
|
if eval_n_limit:
|
|
dataset = dataset.head(eval_n_limit)
|
|
logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
|
|
|
|
new_dataset = [
|
|
instance
|
|
for _, instance in dataset.iterrows()
|
|
if instance[id_column] not in finished_ids
|
|
]
|
|
logger.info(
|
|
f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}'
|
|
)
|
|
|
|
return pd.DataFrame(new_dataset)
|
|
|
|
|
|
async def run_evaluation(
|
|
dataset: pd.DataFrame,
|
|
metadata: EvalMetadata,
|
|
output_file: str,
|
|
num_workers: int,
|
|
process_instance_func: Callable[
|
|
[pd.Series, EvalMetadata, bool], Awaitable[EvalOutput]
|
|
],
|
|
):
|
|
use_multiprocessing = num_workers > 1
|
|
logger.info(
|
|
f'Evaluation started with Agent {metadata.agent_class}, '
|
|
f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.'
|
|
)
|
|
pbar = tqdm(total=len(dataset))
|
|
output_fp = open(output_file, 'a')
|
|
|
|
async def update_progress(future):
|
|
pbar.update(1)
|
|
output: EvalOutput = await future if use_multiprocessing else future
|
|
|
|
pbar.set_description(f'Instance {output.instance_id}')
|
|
pbar.set_postfix_str(f'Test Result: {output.test_result}')
|
|
logger.info(
|
|
f'Finished evaluation for instance {output.instance_id}: {output.test_result}'
|
|
)
|
|
output_fp.write(json.dumps(output.model_dump()) + '\n')
|
|
output_fp.flush()
|
|
|
|
try:
|
|
if use_multiprocessing:
|
|
with ProcessPoolExecutor(num_workers) as executor:
|
|
loop = asyncio.get_event_loop()
|
|
futures = []
|
|
for _, instance in dataset.iterrows():
|
|
future = loop.run_in_executor(
|
|
executor,
|
|
process_instance_func,
|
|
instance,
|
|
metadata,
|
|
bool(num_workers > 1),
|
|
)
|
|
futures.append(update_progress(future))
|
|
|
|
await asyncio.gather(*futures)
|
|
# Use plain for loop for single process for easier debugging
|
|
else:
|
|
assert num_workers == 1
|
|
for _, instance in dataset.iterrows():
|
|
output = await process_instance_func(instance, metadata, False)
|
|
await update_progress(output)
|
|
|
|
except KeyboardInterrupt:
|
|
print('KeyboardInterrupt received. Cleaning up...')
|
|
cleanup()
|
|
|
|
output_fp.close()
|
|
logger.info('Evaluation finished.')
|
|
|
|
|
|
def reset_logger_for_multiprocessing(
|
|
logger: logging.Logger, instance_id: str, log_dir: str
|
|
):
|
|
"""Reset the logger for multiprocessing.
|
|
|
|
Save logs to a separate file for each process, instead of trying to write to the
|
|
same file/console from multiple processes.
|
|
"""
|
|
# Set up logger
|
|
log_file = os.path.join(
|
|
log_dir,
|
|
f'instance_{instance_id}.log',
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
# add back the console handler to print ONE line
|
|
logger.addHandler(get_console_handler())
|
|
logger.info(
|
|
f'Starting evaluation for instance {instance_id}.\n'
|
|
f'Hint: run "tail -f {log_file}" to see live logs in a separate shell'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
os.makedirs(os.path.dirname(log_file), exist_ok=True)
|
|
file_handler = logging.FileHandler(log_file)
|
|
file_handler.setFormatter(
|
|
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
)
|
|
logger.addHandler(file_handler)
|