mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* move multi-line bash tests to test_runtime; support multi-line bash for esruntime; * add testcase to handle PS2 prompt * use bashlex for bash parsing to handle multi-line commands; add testcases for multi-line commands * revert ghcr runtime change * Apply stash * fix run as other user; make test async; * fix test runtime for run as od * add run-as-devin to all the runtime tests * handle the case when username is root * move all run-as-devin tests from sandbox; only tests a few cases on different user to save time; * move over multi-line echo related tests to test_runtime * fix user-specific jupyter by fixing the pypoetry virtualenv folder * make plugin's init async; chdir at initialization of jupyter plugin; move ipy simple testcase to test runtime; * support agentskills import in move tests for jupyter pwd tests; overload `add_env_vars` for EventStreamRuntime to update env var also in Jupyter; make agentskills read env var lazily, in case env var is updated; * fix ServerRuntime agentskills issue * move agnostic image test to test_runtime * merge runtime tests in CI * fix enable auto lint as env var * update warning message * update warning message * test for different container images * change parsing output as debug * add exception handling for update_pwd_decorator * fix unit test indentation * add plugins as default input to Runtime class; remove init_sandbox_plugins; implement add_env_var (include jupyter) in the base class; * fix server runtime auto lint * Revert "add exception handling for update_pwd_decorator" This reverts commit 2b668b1506e02145cb8f87e321aad62febca3d50. * tries to print debugging info for agentskills * explictly setting uid (try fix permission issue) * Revert "tries to print debugging info for agentskills" This reverts commit 8be4c86756f0e3fc62957b327ba2ac4999c419de. * set sandbox user id during testing to hopefully fix the permission issue * add browser tools for server runtime * try to debug for old pwd * update debug cmd * only test agnostic runtime when TEST_RUNTIME is Server * fix temp dir mkdir * load TEST_RUNTIME at the beginning * remove ipython tests * only log to file when DEBUG * default logging to project root * temporarily remove log to file * fix LLM logger dir * fix logger * make set pwd an optional aux action * fix prev pwd * fix infinity recursion * simplify * do not import the whole od library to avoid logger folder by jupyter * fix browsing * increase timeout * attempt to fix agentskills yet again * clean up in testcases, since CI maybe run as non-root * add _cause attribute for event.id * remove parent * add a bunch of debugging statement again for CI :( * fix temp_dir fixture * change all temp dir to follow pytest's tmp_path_factory * remove extra bracket * clean up error printing a bit * jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization * jupyter chdir to self.config.workspace_mount_path_in_sandbox on initialization * add typing for tmp dir fixture * clear the directory before running the test to avoid weird CI temp dir * remove agnostic test case for server runtime * Revert "remove agnostic test case for server runtime" This reverts commit 30e2181c3fc1410e69596c2dcd06be01f1d016b3. * disable agnostic tests in CI * fix test * make sure plugin arg is not passed when no plugin is specified; remove redundant on_event function; * move mock prompt * rename runtime * remove extra logging * refactor run_controller's interface; support multiple runtime for integration test; filter out hostname for prompt * uncomment other tests * pass the right runtime to controller * log runtime when start * uncomment tests * improve symbol filters * add intergration test prompts that seemd ok * add integration test workflow * add python3 to default ubuntu image * symlink python and fix permission to jupyter pip * add retry for jupyter execute server * fix jupyter pip install; add post-process for jupyter pip install; simplify init by add agent_skills path to PYTHONPATH; add testcase to tests jupyter pip install; * fix bug * use ubuntu:22.04 for eventstream integration tests * add todo * update testcase * remove redundant code * fix unit test * reduce dependency for runtime * try making llama-index an optional dependency that's not installed by default * remove pip install since it seemd not needed * log ipython execution; await write message since it returns a future * update ipy testcase * do not install llama-index in CI * do not install llama-index in the app docker as well * set sandbox container image in the integration test script * log plugins & env var for runtime * update conftest for sha256 * add git * remove all non-alphanumeric chalracters * add working ipy module tests! * default to use host network * remove is_async from browser to make thing a little more reliable; retry loading browser when error; * add sleep to wait a bit for http server * kill http server before regenerate browsing tests * fix browsing * only set sandbox container image if undefined * skip empty config value * update evaluation to use the latest run_controller * revert logger in execute_server to be compatible with server runtime * revert logging level to fix jupyter * set logger level * revert the logging * chmod for workspace to fix permission * support getting timeout from action * update test for server runtime * try to fix file permission * fix test_cmd_run_action_serialization_deserialization test (added timeout) * poetry: pip 24.2, torch 2.2.2 * revert adding pip to pyproject.toml * add build to dependencies in pyproject.toml * forgot poetry lock --no-update * fix a DelegatorAgent prompt_002.log (timeout) * fix a DelegatorAgent prompt_003.log (timeout) * couple more timeout attribs in prompt files * some more prompt files * prompts galore * add clarification comment for timeout * default timeout to config * add assert * update integraton tests for eventstream * update integration tests * fix timeout for action<->dict * remove redundant on_event * default to use instance image * update run_controller interface * add logging for copy * refactor swe_bench for the new design * fix action execution timeout * updatelock * remove build sandbox locally * fix runtime * use plain for-loop for single process * remove extra print * get swebench inference working * print whole `test_result` dict * got swebench patch post-process working * update swe-bench evaluation readme * refactor using shared reset_logger function * move messy swebench prompt to a different file * support the ability to specify whether to keep prompt * support the ability to specify whether to keep prompt * fix dockerfile * fix import and remove unnecessary strip logic * fix action serialization * get agentbench running * remove extra ls for agent bench * fix agentbench metric * factor out common documentation for eval * update biocoder doc * remove swe_env_box since it is no longer needed * get biocoder working * add func timeout for bird * fix jupyter pwd with ~ as user name * fix jupyter pwd with ~ as user name * get bird working * get browsing evaluation working * make eda runnable * fix id column * fix eda run_infer * unify eval output using a structured format; make swebench coompatible with that format; update client source code for every swebench run; do not inject testcmd for swebench * standardize existing benchs for the new eval output * set update source code = true * get gaia standardized * fix gaia * gorilla refactored but stuck at language.so to test * refactor and make gpqa work * refactor humanevalfix and get it working * refactor logic reasoning and get it working * refactor browser env so it works with eventstream runtime for eval * add initial version of miniwob refactor * fix browsergym environment * get miniwob working!! * allowing injecting additional dependency to OD runtime docker image * allowing injecting additional dependency to OD runtime docker image * support logic reasoning with pre-injected dependency * get mint working * update runtime build * fix mint docker * add test for keep_prompt; add missing await close for some tests * update integration tests for eventstream runtime * fix integration tests for server runtime * refactor ml bench and toolqa * refactor webarena * fix default factory * Update run_infer.py * add APIError to retry * increase timeout for swebench * make sure to hide api key when dump eval output * update the behavior of put source code to put files instead of tarball * add dishash to dependency * sendintr when timeout * fix dockerfile copy * reduce timeout * use dirhash to avoid repeat building for update source * fix runtime_build testcase * add dir_hash to docker build pipeline * revert api error * update poetry lock * add retries for swebench run infer * fix git patch * update poetry lock * adjust config order * fix mount volumns * enforce all eval to use "instance_id" * remove file store from runtime * make file_store public inside eventstream * move the runtime logic inside `main` out * support using async function for process_instance_fn * refactor run_infer with the create_time * fix file store * Update evaluation/toolqa/utils.py Co-authored-by: Graham Neubig <neubig@gmail.com> * fix typo --------- Co-authored-by: tobitege <tobitege@gmx.de> Co-authored-by: super-dainiu <78588128+super-dainiu@users.noreply.github.com> Co-authored-by: Graham Neubig <neubig@gmail.com>
307 lines
9.9 KiB
Python
307 lines
9.9 KiB
Python
"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in
|
|
"OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124).
|
|
Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py
|
|
for the reference implementation used in the paper.
|
|
|
|
TODOs:
|
|
- Potentially support other HumanEvalPack datasets (Explain & Synthesize)
|
|
- Support other languages (currently only Python)
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
import tempfile
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
from evaluate import load
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import create_runtime, run_controller
|
|
from opendevin.events.action import CmdRunAction
|
|
from opendevin.events.observation import CmdOutputObservation
|
|
from opendevin.runtime.runtime import Runtime
|
|
|
|
IMPORT_HELPER = {
|
|
'python': [
|
|
'import math',
|
|
'import re',
|
|
'import sys',
|
|
'import copy',
|
|
'import datetime',
|
|
'import itertools',
|
|
'import collections',
|
|
'import heapq',
|
|
'import statistics',
|
|
'import functools',
|
|
'import hashlib',
|
|
'import numpy',
|
|
'import numpy as np',
|
|
'import string',
|
|
'from typing import *',
|
|
'from collections import *',
|
|
],
|
|
}
|
|
|
|
LANGUAGE_TO_TIMEOUT = {
|
|
'python': 10,
|
|
}
|
|
|
|
LANGUAGE_TO_NUM_WORKERS = {
|
|
'python': 4,
|
|
}
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have fixed the issue through code changes, please run the following command: <execute_bash> exit </execute_bash>.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_devin=False,
|
|
runtime='eventstream',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
container_image='ubuntu:22.04',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
update_source_code=True,
|
|
),
|
|
# do not mount workspace
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
return config
|
|
|
|
|
|
def _get_instance_id(instance: pd.Series) -> str:
|
|
return instance.task_id.replace('/', '__')
|
|
|
|
|
|
async def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series, # this argument is not required
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
problem_statement = (
|
|
instance.declaration + instance.buggy_solution + '\n' + instance.test
|
|
)
|
|
filename = f'{_get_instance_id(instance)}.py'
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
host_script_path = os.path.join(tmpdir, filename)
|
|
with open(host_script_path, 'w') as f:
|
|
f.write(problem_statement)
|
|
await runtime.copy_to(
|
|
host_script_path,
|
|
'/workspace',
|
|
)
|
|
|
|
# check file exists
|
|
action = CmdRunAction(command=f'ls /workspace/{_get_instance_id(instance)}.py')
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
async def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
# default value
|
|
language = 'python'
|
|
timeout = 10
|
|
|
|
test_result = {'result': {}, 'metadata': {}}
|
|
code_metric = load('Muennighoff/code_eval_octopack')
|
|
timeout = LANGUAGE_TO_TIMEOUT[language]
|
|
num_workers = LANGUAGE_TO_NUM_WORKERS[language]
|
|
python_imports = '\n'.join(IMPORT_HELPER[language])
|
|
|
|
action = CmdRunAction(
|
|
command=f'cat /workspace/{_get_instance_id(instance)}.py', keep_prompt=False
|
|
)
|
|
obs = await runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
function = obs.content.replace('\r\n', '\n')
|
|
logger.info(f'Function: {function}')
|
|
function = [[python_imports + '\n' + function]]
|
|
|
|
results, logs = code_metric.compute(
|
|
references=[instance.test],
|
|
predictions=function,
|
|
language=language,
|
|
timeout=timeout,
|
|
num_workers=num_workers,
|
|
)
|
|
test_result['result'] = results
|
|
test_result['metadata'] = {
|
|
'logs': logs,
|
|
'timeout': timeout,
|
|
'num_workers': num_workers,
|
|
}
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return test_result
|
|
|
|
|
|
async def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
config = get_config(metadata)
|
|
# use a session id for concurrent evaluation
|
|
sid = _get_instance_id(instance)
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance.task_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance.task_id}.')
|
|
|
|
# Create file with HumanEvalFix problem
|
|
# Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509
|
|
problem_statement = (
|
|
instance.declaration + instance.buggy_solution + '\n' + instance.test
|
|
)
|
|
|
|
# Prepare instruction
|
|
instruction = (
|
|
f'Please fix the function in {sid}.py such that all test cases pass.\n'
|
|
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n'
|
|
'# Problem Statement\n'
|
|
f'{problem_statement}\n\n'
|
|
)
|
|
instruction += (
|
|
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n'
|
|
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n'
|
|
)
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
runtime = await create_runtime(config, sid=sid)
|
|
await initialize_runtime(runtime, instance)
|
|
state: State | None = await run_controller(
|
|
config=config,
|
|
task_str=instruction,
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
test_result = await complete_runtime(runtime, instance)
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
# Save the output
|
|
output = EvalOutput(
|
|
instance_id=instance.task_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
|
|
# so we don't need to manage file uploading to OpenDevin's repo
|
|
dataset = load_dataset(
|
|
'bigcode/humanevalpack', 'python'
|
|
) # TODO: Support other languages
|
|
hefix_tests = dataset['test'].to_pandas()
|
|
hefix_tests.rename(columns={'task_id': 'instance_id'}, inplace=True)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'humanevalfix-python',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(hefix_tests, output_file, args.eval_n_limit)
|
|
|
|
asyncio.run(
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
)
|