Boxuan Li 319b9ac0f3
Fix micro-agents schema bug (#1424)
* Fix micro agents definitions

* Add tests for micro agents

* Add to CI

* Revert "Add to CI"

This reverts commit 94f3b4e7c8408a1b0267f3847cbaefdcd995db05.

* Remove test artifacts for ManagerAgent

---------

Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
2024-04-29 10:34:03 -04:00

78 lines
2.3 KiB
Python

import json
from typing import List, Dict
from jinja2 import Environment, BaseLoader
from opendevin.agent import Agent
from opendevin.llm.llm import LLM
from opendevin.state import State
from opendevin.action import Action, action_from_dict
from opendevin.exceptions import LLMOutputError
from .instructions import instructions
from .registry import all_microagents
def parse_response(orig_response: str) -> Action:
json_start = orig_response.find('{')
json_end = orig_response.rfind('}') + 1
response = orig_response[json_start:json_end]
try:
action_dict = json.loads(response)
except json.JSONDecodeError as e:
raise LLMOutputError(
'Invalid JSON in response. Please make sure the response is a valid JSON object'
) from e
action = action_from_dict(action_dict)
return action
def my_encoder(obj):
"""
Encodes objects as dictionaries
Parameters:
- obj (Object): An object that will be converted
Returns:
- dict: If the object can be converted it is returned in dict format
"""
if hasattr(obj, 'to_dict'):
return obj.to_dict()
def to_json(obj, **kwargs):
"""
Serialize an object to str format
"""
return json.dumps(obj, default=my_encoder, **kwargs)
class MicroAgent(Agent):
prompt = ''
agent_definition: Dict = {}
def __init__(self, llm: LLM):
super().__init__(llm)
if 'name' not in self.agent_definition:
raise ValueError('Agent definition must contain a name')
self.prompt_template = Environment(loader=BaseLoader).from_string(self.prompt)
self.delegates = all_microagents.copy()
del self.delegates[self.agent_definition['name']]
def step(self, state: State) -> Action:
prompt = self.prompt_template.render(
state=state,
instructions=instructions,
to_json=to_json,
delegates=self.delegates)
messages = [{'content': prompt, 'role': 'user'}]
resp = self.llm.completion(messages=messages)
action_resp = resp['choices'][0]['message']['content']
state.num_of_chars += len(prompt) + len(action_resp)
action = parse_response(action_resp)
return action
def search_memory(self, query: str) -> List[str]:
return []