mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* Fix micro agents definitions * Add tests for micro agents * Add to CI * Revert "Add to CI" This reverts commit 94f3b4e7c8408a1b0267f3847cbaefdcd995db05. * Remove test artifacts for ManagerAgent --------- Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
import json
|
|
from typing import List, Dict
|
|
|
|
from jinja2 import Environment, BaseLoader
|
|
|
|
from opendevin.agent import Agent
|
|
from opendevin.llm.llm import LLM
|
|
from opendevin.state import State
|
|
from opendevin.action import Action, action_from_dict
|
|
from opendevin.exceptions import LLMOutputError
|
|
|
|
from .instructions import instructions
|
|
from .registry import all_microagents
|
|
|
|
|
|
def parse_response(orig_response: str) -> Action:
|
|
json_start = orig_response.find('{')
|
|
json_end = orig_response.rfind('}') + 1
|
|
response = orig_response[json_start:json_end]
|
|
try:
|
|
action_dict = json.loads(response)
|
|
except json.JSONDecodeError as e:
|
|
raise LLMOutputError(
|
|
'Invalid JSON in response. Please make sure the response is a valid JSON object'
|
|
) from e
|
|
action = action_from_dict(action_dict)
|
|
return action
|
|
|
|
|
|
def my_encoder(obj):
|
|
"""
|
|
Encodes objects as dictionaries
|
|
|
|
Parameters:
|
|
- obj (Object): An object that will be converted
|
|
|
|
Returns:
|
|
- dict: If the object can be converted it is returned in dict format
|
|
"""
|
|
if hasattr(obj, 'to_dict'):
|
|
return obj.to_dict()
|
|
|
|
|
|
def to_json(obj, **kwargs):
|
|
"""
|
|
Serialize an object to str format
|
|
"""
|
|
return json.dumps(obj, default=my_encoder, **kwargs)
|
|
|
|
|
|
class MicroAgent(Agent):
|
|
prompt = ''
|
|
agent_definition: Dict = {}
|
|
|
|
def __init__(self, llm: LLM):
|
|
super().__init__(llm)
|
|
if 'name' not in self.agent_definition:
|
|
raise ValueError('Agent definition must contain a name')
|
|
self.prompt_template = Environment(loader=BaseLoader).from_string(self.prompt)
|
|
self.delegates = all_microagents.copy()
|
|
del self.delegates[self.agent_definition['name']]
|
|
|
|
def step(self, state: State) -> Action:
|
|
prompt = self.prompt_template.render(
|
|
state=state,
|
|
instructions=instructions,
|
|
to_json=to_json,
|
|
delegates=self.delegates)
|
|
messages = [{'content': prompt, 'role': 'user'}]
|
|
resp = self.llm.completion(messages=messages)
|
|
action_resp = resp['choices'][0]['message']['content']
|
|
state.num_of_chars += len(prompt) + len(action_resp)
|
|
action = parse_response(action_resp)
|
|
return action
|
|
|
|
def search_memory(self, query: str) -> List[str]:
|
|
return []
|