mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* Remove global config from memory * Remove runtime global config * Remove from storage * Remove global config * Fix event stream tests * Fix sandbox issue * Change config * Removed transferred tests * Add swe env box * Fixes on testing * Fixed some tests * Fix typing * Fix ipython test * Revive function * Make temp_dir fixture * Remove test to avoid circular import
242 lines
9.3 KiB
Python
242 lines
9.3 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
import pathlib
|
|
import re
|
|
import shutil
|
|
from functools import partial
|
|
|
|
import huggingface_hub
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.gaia.scorer import question_scorer
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
codeact_user_response,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.agent import Agent
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import get_llm_config_arg, get_parser, load_app_config
|
|
from opendevin.core.logger import get_console_handler
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import run_agent_controller
|
|
from opendevin.events.action import CmdRunAction, MessageAction
|
|
from opendevin.llm.llm import LLM
|
|
|
|
config = load_app_config()
|
|
|
|
DATASET_CACHE_DIR = '~/.cache/open-devin/evals/gaia'
|
|
DATASET_CACHE_DIR = os.path.expanduser(DATASET_CACHE_DIR)
|
|
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': partial(codeact_user_response, encapsulate_solution=True),
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
# Create the agent
|
|
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config))
|
|
# create process-specific workspace dir
|
|
# we will create a workspace directory for EACH process
|
|
# so that different agent don't interfere with each other.
|
|
old_workspace_mount_path = config.workspace_mount_path
|
|
|
|
try:
|
|
workspace_mount_path = os.path.join(
|
|
config.workspace_mount_path, '_eval_workspace'
|
|
)
|
|
workspace_mount_path = os.path.join(workspace_mount_path, str(os.getpid()))
|
|
pathlib.Path(workspace_mount_path).mkdir(parents=True, exist_ok=True)
|
|
config.workspace_mount_path = workspace_mount_path
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
eval_output_dir = metadata.eval_output_dir
|
|
if reset_logger:
|
|
# Set up logger
|
|
log_file = os.path.join(
|
|
eval_output_dir, 'logs', f'instance_{instance["task_id"]}.log'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
# add back the console handler to print ONE line
|
|
logger.addHandler(get_console_handler())
|
|
logger.info(
|
|
f'Starting evaluation for instance {instance["task_id"]}.\nLOG: tail -f {log_file}'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
file_handler = logging.FileHandler(log_file)
|
|
file_handler.setFormatter(
|
|
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
)
|
|
logger.addHandler(file_handler)
|
|
|
|
logger.info(f'Process-specific workspace mounted at {workspace_mount_path}')
|
|
if instance['file_name'] != '':
|
|
# if this question comes with a file, we need to save it to the workspace
|
|
assert metadata.data_split is not None
|
|
src_file = os.path.join(
|
|
DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name']
|
|
)
|
|
extension_name = instance['file_name'].split('.')[-1]
|
|
dest_file = os.path.join(workspace_mount_path, f'file.{extension_name}')
|
|
shutil.copyfile(src_file, dest_file)
|
|
logger.info(f'File copied to {dest_file}')
|
|
else:
|
|
dest_file = None
|
|
|
|
# Prepare instruction
|
|
instruction = f"{instance['Question']}\n"
|
|
logger.info(f'Instruction: {instruction}')
|
|
if dest_file:
|
|
instruction += f"\n\nThe mentioned file is provided in the workspace at: {dest_file.split('/')[-1]}"
|
|
|
|
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
|
|
instruction += (
|
|
'For example: The answer to the question is <solution> 42 </solution>.\n'
|
|
)
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent.__class__.__name__, '')
|
|
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
state: State | None = asyncio.run(
|
|
run_agent_controller(
|
|
agent,
|
|
instruction,
|
|
max_iterations=metadata.max_iterations,
|
|
max_budget_per_task=config.max_budget_per_task,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
agent.__class__.__name__
|
|
],
|
|
sid=instance['task_id'],
|
|
)
|
|
)
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
model_answer_raw = ''
|
|
|
|
# get the last message or thought from the agent
|
|
for event in state.history.get_events(reverse=True):
|
|
if isinstance(event, CmdRunAction) and event.source == 'agent':
|
|
model_answer_raw = event.thought
|
|
elif isinstance(event, MessageAction) and event.source == 'agent':
|
|
model_answer_raw = event.content
|
|
|
|
# attempt to parse model_answer
|
|
model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw)
|
|
if len(model_answer) == 0:
|
|
logger.warning(f'Failed to parse model answer: {model_answer_raw}')
|
|
model_answer = model_answer_raw
|
|
else:
|
|
model_answer = model_answer[0]
|
|
|
|
logger.info(
|
|
f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}'
|
|
)
|
|
score = question_scorer(
|
|
model_answer=model_answer, ground_truth=instance['Final answer']
|
|
)
|
|
test_result = {
|
|
'score': score,
|
|
'model_answer_raw': model_answer_raw,
|
|
'model_answer': model_answer,
|
|
'ground_truth': instance['Final answer'],
|
|
}
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
# Save the output
|
|
output = {
|
|
'instance_id': instance['task_id'],
|
|
'instance': instance,
|
|
'instruction': instance['Question'],
|
|
'metadata': metadata.model_dump(),
|
|
'history': histories,
|
|
'metrics': metrics,
|
|
'error': state.last_error if state and state.last_error else None,
|
|
'test_result': test_result,
|
|
}
|
|
except Exception:
|
|
logger.error('Process instance failed')
|
|
raise
|
|
finally:
|
|
config.workspace_mount_path = old_workspace_mount_path
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--level',
|
|
type=str,
|
|
help='gaia level to evaluate, eg. 2023_level1',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
if args.directory:
|
|
config.workspace_base = os.path.abspath(args.directory)
|
|
logger.info(f'Setting workspace base to {config.workspace_base}')
|
|
|
|
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
|
|
logger.info(f'Config for evaluation: {config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config=llm_config,
|
|
dataset_name='gaia',
|
|
agent_class=args.agent_cls,
|
|
max_iterations=args.max_iterations,
|
|
eval_note=args.eval_note,
|
|
eval_output_dir=args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
details={'gaia-level': args.level},
|
|
)
|
|
|
|
dataset = load_dataset('gaia-benchmark/GAIA', args.level)
|
|
huggingface_hub.snapshot_download(
|
|
'gaia-benchmark/GAIA',
|
|
repo_type='dataset',
|
|
local_dir=DATASET_CACHE_DIR,
|
|
)
|
|
gaia_tests = dataset[metadata.data_split]
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
prepared_dataset = prepare_dataset(
|
|
gaia_tests.to_pandas(), output_file, args.eval_n_limit, 'task_id'
|
|
)
|
|
|
|
agent = Agent.get_cls(args.agent_cls)(llm=LLM(config.llm))
|
|
|
|
run_evaluation(
|
|
dataset=prepared_dataset,
|
|
metadata=metadata,
|
|
output_file=output_file,
|
|
num_workers=args.eval_num_workers,
|
|
process_instance_func=process_instance,
|
|
id_column='task_id',
|
|
)
|