OpenHands/evaluation/EDA/run_infer.py
Graham Neubig 275ea706cf
Remove remaining global config (#3099)
* Remove global config from memory

* Remove runtime global config

* Remove from storage

* Remove global config

* Fix event stream tests

* Fix sandbox issue

* Change config

* Removed transferred tests

* Add swe env box

* Fixes on testing

* Fixed some tests

* Fix typing

* Fix ipython test

* Revive function

* Make temp_dir fixture

* Remove test to avoid circular import
2024-07-26 18:43:32 +00:00

230 lines
7.3 KiB
Python

import asyncio
import logging
import os
import pandas as pd
# import huggingface_hub
from datasets import load_dataset
from evaluation.EDA.game import Q20Game, Q20GameCelebrity
from evaluation.utils.shared import (
EvalMetadata,
make_metadata,
prepare_dataset,
run_evaluation,
)
from opendevin.controller.agent import Agent
# from evaluation.EDA.scorer import question_scorer
from opendevin.controller.state.state import State
from opendevin.core.config import get_llm_config_arg, get_parser, load_app_config
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import run_agent_controller
from opendevin.llm.llm import LLM
config = load_app_config()
game = None
def codeact_user_response_eda(state: State) -> str:
global game
model_guess = ''
# retrieve the latest model message from history
if state.history:
model_guess = state.history.get_last_agent_message()
assert game is not None, 'Game is not initialized.'
msg = game.generate_user_response(model_guess)
game.curr_turn += 1
logger.info(f'Model guess: {model_guess}')
logger.info(f'Answer response: {msg}')
if 'bingo!' in msg.lower():
return '/exit'
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response_eda,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
# Create the agent
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config))
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
eval_output_dir = metadata.eval_output_dir
if reset_logger:
# Set up logger
log_file = os.path.join(
eval_output_dir, 'logs', f'instance_{instance["text"].strip()}.log'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {instance["text"].strip()}.\nLOG: tail -f {log_file}'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
# Prepare instruction
_game_class = {'things': Q20Game, 'celebs': Q20GameCelebrity}
guesser_kargs = {
'max_new_tokens': 64,
'temperature': 0.8,
'repetition_penalty': 1.0,
'do_sample': True,
} # no penalty
# Use codeactagent as guesser_model
global game
assert metadata.dataset is not None
assert metadata.details is not None
game = _game_class[metadata.dataset](
item=instance['text'].strip(),
answerer_model=metadata.details['answerer_model'],
guesser_model=None,
num_turns=metadata.max_iterations,
openai_api_key=metadata.details['openai_api_key'],
guesser_kargs=guesser_kargs,
)
instruction = f'{game.first_user_utterance}'
logger.info(f'Instruction: {instruction}')
# instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_agent_controller(
agent,
instruction,
max_iterations=metadata.max_iterations,
max_budget_per_task=config.max_budget_per_task,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
agent.__class__.__name__
],
sid=instance['text'].strip(),
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
final_message = state.history.get_last_agent_message()
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
test_result = game.reward()
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = {
'instance_id': instance['text'].strip(),
'instance': instance,
'instruction': instruction,
'metadata': metadata.model_dump(),
'history': histories,
'metrics': metrics,
'error': state.last_error if state and state.last_error else None,
'test_result': {
'success': test_result,
'final_message': final_message,
'ground_truth': instance['text'],
},
}
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
)
parser.add_argument(
'--dataset',
default='things',
choices=['things', 'celebs'],
type=str,
help='dataset to be used',
)
parser.add_argument(
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
)
parser.add_argument(
'--data-split',
default='test',
type=str,
help='data split, eg, test',
)
args, _ = parser.parse_known_args()
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
logger.info(f'Config for evaluation: {config}')
eda_dataset = load_dataset(
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
)
metadata = make_metadata(
llm_config,
f'eda-{args.dataset}',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
data_split=args.data_split,
details={
'answerer_model': str(args.answerer_model),
'openai_api_key': str(args.OPENAI_API_KEY),
},
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
prepared_dataset = prepare_dataset(
eda_dataset.to_pandas(), output_file, args.eval_n_limit, 'text'
)
agent = Agent.get_cls(args.agent_cls)(llm=LLM(config.llm))
run_evaluation(
prepared_dataset,
metadata,
output_file,
args.eval_num_workers,
process_instance,
'text',
)