mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
* Remove global config from memory * Remove runtime global config * Remove from storage * Remove global config * Fix event stream tests * Fix sandbox issue * Change config * Removed transferred tests * Add swe env box * Fixes on testing * Fixed some tests * Fix typing * Fix ipython test * Revive function * Make temp_dir fixture * Remove test to avoid circular import
230 lines
7.3 KiB
Python
230 lines
7.3 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
|
|
import pandas as pd
|
|
|
|
# import huggingface_hub
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.EDA.game import Q20Game, Q20GameCelebrity
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
run_evaluation,
|
|
)
|
|
from opendevin.controller.agent import Agent
|
|
|
|
# from evaluation.EDA.scorer import question_scorer
|
|
from opendevin.controller.state.state import State
|
|
from opendevin.core.config import get_llm_config_arg, get_parser, load_app_config
|
|
from opendevin.core.logger import get_console_handler
|
|
from opendevin.core.logger import opendevin_logger as logger
|
|
from opendevin.core.main import run_agent_controller
|
|
from opendevin.llm.llm import LLM
|
|
|
|
config = load_app_config()
|
|
|
|
game = None
|
|
|
|
|
|
def codeact_user_response_eda(state: State) -> str:
|
|
global game
|
|
model_guess = ''
|
|
|
|
# retrieve the latest model message from history
|
|
if state.history:
|
|
model_guess = state.history.get_last_agent_message()
|
|
|
|
assert game is not None, 'Game is not initialized.'
|
|
msg = game.generate_user_response(model_guess)
|
|
game.curr_turn += 1
|
|
logger.info(f'Model guess: {model_guess}')
|
|
logger.info(f'Answer response: {msg}')
|
|
if 'bingo!' in msg.lower():
|
|
return '/exit'
|
|
return msg
|
|
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response_eda,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
# Create the agent
|
|
agent = Agent.get_cls(metadata.agent_class)(llm=LLM(config=metadata.llm_config))
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
eval_output_dir = metadata.eval_output_dir
|
|
if reset_logger:
|
|
# Set up logger
|
|
log_file = os.path.join(
|
|
eval_output_dir, 'logs', f'instance_{instance["text"].strip()}.log'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
# add back the console handler to print ONE line
|
|
logger.addHandler(get_console_handler())
|
|
logger.info(
|
|
f'Starting evaluation for instance {instance["text"].strip()}.\nLOG: tail -f {log_file}'
|
|
)
|
|
# Remove all existing handlers from logger
|
|
for handler in logger.handlers[:]:
|
|
logger.removeHandler(handler)
|
|
file_handler = logging.FileHandler(log_file)
|
|
file_handler.setFormatter(
|
|
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
)
|
|
logger.addHandler(file_handler)
|
|
|
|
# Prepare instruction
|
|
_game_class = {'things': Q20Game, 'celebs': Q20GameCelebrity}
|
|
|
|
guesser_kargs = {
|
|
'max_new_tokens': 64,
|
|
'temperature': 0.8,
|
|
'repetition_penalty': 1.0,
|
|
'do_sample': True,
|
|
} # no penalty
|
|
|
|
# Use codeactagent as guesser_model
|
|
global game
|
|
assert metadata.dataset is not None
|
|
assert metadata.details is not None
|
|
game = _game_class[metadata.dataset](
|
|
item=instance['text'].strip(),
|
|
answerer_model=metadata.details['answerer_model'],
|
|
guesser_model=None,
|
|
num_turns=metadata.max_iterations,
|
|
openai_api_key=metadata.details['openai_api_key'],
|
|
guesser_kargs=guesser_kargs,
|
|
)
|
|
|
|
instruction = f'{game.first_user_utterance}'
|
|
logger.info(f'Instruction: {instruction}')
|
|
|
|
# instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
|
|
# NOTE: You can actually set slightly different instruction for different agents
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[agent.__class__.__name__]
|
|
|
|
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
|
|
|
state: State | None = asyncio.run(
|
|
run_agent_controller(
|
|
agent,
|
|
instruction,
|
|
max_iterations=metadata.max_iterations,
|
|
max_budget_per_task=config.max_budget_per_task,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
agent.__class__.__name__
|
|
],
|
|
sid=instance['text'].strip(),
|
|
)
|
|
)
|
|
# ======= Attempt to evaluate the agent's edits =======
|
|
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
final_message = state.history.get_last_agent_message()
|
|
|
|
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}')
|
|
test_result = game.reward()
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = state.history.compatibility_for_eval_history_pairs()
|
|
|
|
# Save the output
|
|
output = {
|
|
'instance_id': instance['text'].strip(),
|
|
'instance': instance,
|
|
'instruction': instruction,
|
|
'metadata': metadata.model_dump(),
|
|
'history': histories,
|
|
'metrics': metrics,
|
|
'error': state.last_error if state and state.last_error else None,
|
|
'test_result': {
|
|
'success': test_result,
|
|
'final_message': final_message,
|
|
'ground_truth': instance['text'],
|
|
},
|
|
}
|
|
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model'
|
|
)
|
|
parser.add_argument(
|
|
'--dataset',
|
|
default='things',
|
|
choices=['things', 'celebs'],
|
|
type=str,
|
|
help='dataset to be used',
|
|
)
|
|
parser.add_argument(
|
|
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key'
|
|
)
|
|
parser.add_argument(
|
|
'--data-split',
|
|
default='test',
|
|
type=str,
|
|
help='data split, eg, test',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
llm_config = get_llm_config_arg(args.llm_config) if args.llm_config else config.llm
|
|
logger.info(f'Config for evaluation: {config}')
|
|
|
|
eda_dataset = load_dataset(
|
|
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split
|
|
)
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'eda-{args.dataset}',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
data_split=args.data_split,
|
|
details={
|
|
'answerer_model': str(args.answerer_model),
|
|
'openai_api_key': str(args.OPENAI_API_KEY),
|
|
},
|
|
)
|
|
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
prepared_dataset = prepare_dataset(
|
|
eda_dataset.to_pandas(), output_file, args.eval_n_limit, 'text'
|
|
)
|
|
|
|
agent = Agent.get_cls(args.agent_cls)(llm=LLM(config.llm))
|
|
|
|
run_evaluation(
|
|
prepared_dataset,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
'text',
|
|
)
|