mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-25 21:36:52 +08:00
Co-authored-by: openhands <openhands@all-hands.dev> Co-authored-by: Graham Neubig <neubig@gmail.com> Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
330 lines
12 KiB
Python
330 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import Any
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from openhands.core.config.condenser_config import (
|
|
StructuredSummaryCondenserConfig,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.message import Message, TextContent
|
|
from openhands.events.action.agent import CondensationAction
|
|
from openhands.events.observation.agent import AgentCondensationObservation
|
|
from openhands.events.serialization.event import truncate_content
|
|
from openhands.llm.llm import LLM
|
|
from openhands.llm.llm_registry import LLMRegistry
|
|
from openhands.memory.condenser.condenser import (
|
|
Condensation,
|
|
RollingCondenser,
|
|
View,
|
|
)
|
|
|
|
|
|
class StateSummary(BaseModel):
|
|
"""A structured representation summarizing the state of the agent and the task."""
|
|
|
|
# Required core fields
|
|
user_context: str = Field(
|
|
default='',
|
|
description='Essential user requirements, goals, and clarifications in concise form.',
|
|
)
|
|
completed_tasks: str = Field(
|
|
default='', description='List of tasks completed so far with brief results.'
|
|
)
|
|
pending_tasks: str = Field(
|
|
default='', description='List of tasks that still need to be done.'
|
|
)
|
|
current_state: str = Field(
|
|
default='',
|
|
description='Current variables, data structures, or other relevant state information.',
|
|
)
|
|
|
|
# Code state fields
|
|
files_modified: str = Field(
|
|
default='', description='List of files that have been created or modified.'
|
|
)
|
|
function_changes: str = Field(
|
|
default='', description='List of functions that have been created or modified.'
|
|
)
|
|
data_structures: str = Field(
|
|
default='', description='List of key data structures in use or modified.'
|
|
)
|
|
|
|
# Test status fields
|
|
tests_written: str = Field(
|
|
default='',
|
|
description='Whether tests have been written for the changes. True, false, or unknown.',
|
|
)
|
|
tests_passing: str = Field(
|
|
default='',
|
|
description='Whether all tests are currently passing. True, false, or unknown.',
|
|
)
|
|
failing_tests: str = Field(
|
|
default='', description='List of names or descriptions of any failing tests.'
|
|
)
|
|
error_messages: str = Field(
|
|
default='', description='List of key error messages encountered.'
|
|
)
|
|
|
|
# Version control fields
|
|
branch_created: str = Field(
|
|
default='',
|
|
description='Whether a branch has been created for this work. True, false, or unknown.',
|
|
)
|
|
branch_name: str = Field(
|
|
default='', description='Name of the current working branch if known.'
|
|
)
|
|
commits_made: str = Field(
|
|
default='',
|
|
description='Whether any commits have been made. True, false, or unknown.',
|
|
)
|
|
pr_created: str = Field(
|
|
default='',
|
|
description='Whether a pull request has been created. True, false, or unknown.',
|
|
)
|
|
pr_status: str = Field(
|
|
default='',
|
|
description="Status of any pull request: 'draft', 'open', 'merged', 'closed', or 'unknown'.",
|
|
)
|
|
|
|
# Other fields
|
|
dependencies: str = Field(
|
|
default='',
|
|
description='List of dependencies or imports that have been added or modified.',
|
|
)
|
|
other_relevant_context: str = Field(
|
|
default='',
|
|
description="Any other important information that doesn't fit into the categories above.",
|
|
)
|
|
|
|
@classmethod
|
|
def tool_description(cls) -> dict[str, Any]:
|
|
"""Description of a tool whose arguments are the fields of this class.
|
|
|
|
Can be given to an LLM to force structured generation.
|
|
"""
|
|
properties = {}
|
|
|
|
# Build properties dictionary from field information
|
|
for field_name, field in cls.model_fields.items():
|
|
description = field.description or ''
|
|
|
|
properties[field_name] = {'type': 'string', 'description': description}
|
|
|
|
return {
|
|
'type': 'function',
|
|
'function': {
|
|
'name': 'create_state_summary',
|
|
'description': 'Creates a comprehensive summary of the current state of the interaction to preserve context when history grows too large. You must include non-empty values for user_context, completed_tasks, and pending_tasks.',
|
|
'parameters': {
|
|
'type': 'object',
|
|
'properties': properties,
|
|
'required': ['user_context', 'completed_tasks', 'pending_tasks'],
|
|
},
|
|
},
|
|
}
|
|
|
|
def __str__(self) -> str:
|
|
"""Format the state summary in a clear way for Claude 3.7 Sonnet."""
|
|
sections = [
|
|
'# State Summary',
|
|
'## Core Information',
|
|
f'**User Context**: {self.user_context}',
|
|
f'**Completed Tasks**: {self.completed_tasks}',
|
|
f'**Pending Tasks**: {self.pending_tasks}',
|
|
f'**Current State**: {self.current_state}',
|
|
'## Code Changes',
|
|
f'**Files Modified**: {self.files_modified}',
|
|
f'**Function Changes**: {self.function_changes}',
|
|
f'**Data Structures**: {self.data_structures}',
|
|
f'**Dependencies**: {self.dependencies}',
|
|
'## Testing Status',
|
|
f'**Tests Written**: {self.tests_written}',
|
|
f'**Tests Passing**: {self.tests_passing}',
|
|
f'**Failing Tests**: {self.failing_tests}',
|
|
f'**Error Messages**: {self.error_messages}',
|
|
'## Version Control',
|
|
f'**Branch Created**: {self.branch_created}',
|
|
f'**Branch Name**: {self.branch_name}',
|
|
f'**Commits Made**: {self.commits_made}',
|
|
f'**PR Created**: {self.pr_created}',
|
|
f'**PR Status**: {self.pr_status}',
|
|
'## Additional Context',
|
|
f'**Other Relevant Context**: {self.other_relevant_context}',
|
|
]
|
|
|
|
# Join all sections with double newlines
|
|
return '\n\n'.join(sections)
|
|
|
|
|
|
class StructuredSummaryCondenser(RollingCondenser):
|
|
"""A condenser that summarizes forgotten events.
|
|
|
|
Maintains a condensed history and forgets old events when it grows too large. Uses structured generation via function-calling to produce summaries that replace forgotten events.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
max_size: int = 100,
|
|
keep_first: int = 1,
|
|
max_event_length: int = 10_000,
|
|
):
|
|
if keep_first >= max_size // 2:
|
|
raise ValueError(
|
|
f'keep_first ({keep_first}) must be less than half of max_size ({max_size})'
|
|
)
|
|
if keep_first < 0:
|
|
raise ValueError(f'keep_first ({keep_first}) cannot be negative')
|
|
if max_size < 1:
|
|
raise ValueError(f'max_size ({max_size}) cannot be non-positive')
|
|
|
|
self.max_size = max_size
|
|
self.keep_first = keep_first
|
|
self.max_event_length = max_event_length
|
|
self.llm = llm
|
|
if not self.llm.is_function_calling_active():
|
|
raise ValueError(
|
|
'LLM must support function calling to use StructuredSummaryCondenser'
|
|
)
|
|
|
|
super().__init__()
|
|
|
|
def _truncate(self, content: str) -> str:
|
|
"""Truncate the content to fit within the specified maximum event length."""
|
|
return truncate_content(content, max_chars=self.max_event_length)
|
|
|
|
def get_condensation(self, view: View) -> Condensation:
|
|
head = view[: self.keep_first]
|
|
target_size = self.max_size // 2
|
|
# Number of events to keep from the tail -- target size, minus however many
|
|
# prefix events from the head, minus one for the summarization event
|
|
events_from_tail = target_size - len(head) - 1
|
|
|
|
summary_event = (
|
|
view[self.keep_first]
|
|
if isinstance(view[self.keep_first], AgentCondensationObservation)
|
|
else AgentCondensationObservation('No events summarized')
|
|
)
|
|
|
|
# Identify events to be forgotten (those not in head or tail)
|
|
forgotten_events = []
|
|
for event in view[self.keep_first : -events_from_tail]:
|
|
if not isinstance(event, AgentCondensationObservation):
|
|
forgotten_events.append(event)
|
|
|
|
# Construct prompt for summarization
|
|
prompt = """You are maintaining a context-aware state summary for an interactive software agent. This summary is critical because it:
|
|
1. Preserves essential context when conversation history grows too large
|
|
2. Prevents lost work when the session length exceeds token limits
|
|
3. Helps maintain continuity across multiple interactions
|
|
|
|
You will be given:
|
|
- A list of events (actions taken by the agent)
|
|
- The most recent previous summary (if one exists)
|
|
|
|
Capture all relevant information, especially:
|
|
- User requirements that were explicitly stated
|
|
- Work that has been completed
|
|
- Tasks that remain pending
|
|
- Current state of code, variables, and data structures
|
|
- The status of any version control operations"""
|
|
|
|
prompt += '\n\n'
|
|
|
|
# Add the previous summary if it exists. We'll always have a summary
|
|
# event, but the types aren't precise enought to guarantee that it has a
|
|
# message attribute.
|
|
summary_event_content = self._truncate(
|
|
summary_event.message if summary_event.message else ''
|
|
)
|
|
prompt += f'<PREVIOUS SUMMARY>\n{summary_event_content}\n</PREVIOUS SUMMARY>\n'
|
|
|
|
prompt += '\n\n'
|
|
|
|
# Add all events that are being forgotten. We use the string
|
|
# representation defined by the event, and truncate it if necessary.
|
|
for forgotten_event in forgotten_events:
|
|
event_content = self._truncate(str(forgotten_event))
|
|
prompt += f'<EVENT id={forgotten_event.id}>\n{event_content}\n</EVENT>\n'
|
|
|
|
messages = [Message(role='user', content=[TextContent(text=prompt)])]
|
|
|
|
response = self.llm.completion(
|
|
messages=self.llm.format_messages_for_llm(messages),
|
|
tools=[StateSummary.tool_description()],
|
|
tool_choice={
|
|
'type': 'function',
|
|
'function': {'name': 'create_state_summary'},
|
|
},
|
|
)
|
|
|
|
try:
|
|
# Extract the message containing tool calls
|
|
message = response.choices[0].message
|
|
|
|
# Check if there are tool calls
|
|
if not hasattr(message, 'tool_calls') or not message.tool_calls:
|
|
raise ValueError('No tool calls found in response')
|
|
|
|
# Find the create_state_summary tool call
|
|
summary_tool_call = None
|
|
for tool_call in message.tool_calls:
|
|
if tool_call.function.name == 'create_state_summary':
|
|
summary_tool_call = tool_call
|
|
break
|
|
|
|
if not summary_tool_call:
|
|
raise ValueError('create_state_summary tool call not found')
|
|
|
|
# Parse the arguments
|
|
args_json = summary_tool_call.function.arguments
|
|
args_dict = json.loads(args_json)
|
|
|
|
# Create a StateSummary object
|
|
summary = StateSummary.model_validate(args_dict)
|
|
|
|
except (ValueError, AttributeError, KeyError, json.JSONDecodeError) as e:
|
|
logger.warning(
|
|
f'Failed to parse summary tool call: {e}. Using empty summary.'
|
|
)
|
|
summary = StateSummary()
|
|
|
|
self.add_metadata('response', response.model_dump())
|
|
self.add_metadata('metrics', self.llm.metrics.get())
|
|
|
|
return Condensation(
|
|
action=CondensationAction(
|
|
forgotten_events_start_id=min(event.id for event in forgotten_events),
|
|
forgotten_events_end_id=max(event.id for event in forgotten_events),
|
|
summary=str(summary),
|
|
summary_offset=self.keep_first,
|
|
)
|
|
)
|
|
|
|
def should_condense(self, view: View) -> bool:
|
|
return len(view) > self.max_size
|
|
|
|
@classmethod
|
|
def from_config(
|
|
cls, config: StructuredSummaryCondenserConfig, llm_registry: LLMRegistry
|
|
) -> StructuredSummaryCondenser:
|
|
# This condenser cannot take advantage of prompt caching. If it happens
|
|
# to be set, we'll pay for the cache writes but never get a chance to
|
|
# save on a read.
|
|
llm_config = config.llm_config.model_copy()
|
|
llm_config.caching_prompt = False
|
|
llm = llm_registry.get_llm('condenser', llm_config)
|
|
|
|
return StructuredSummaryCondenser(
|
|
llm=llm,
|
|
max_size=config.max_size,
|
|
keep_first=config.keep_first,
|
|
max_event_length=config.max_event_length,
|
|
)
|
|
|
|
|
|
StructuredSummaryCondenser.register_config(StructuredSummaryCondenserConfig)
|