mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
Co-authored-by: openhands <openhands@all-hands.dev> Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
126 lines
4.6 KiB
Python
126 lines
4.6 KiB
Python
"""This file contains the function calling implementation for different actions.
|
|
|
|
This is similar to the functionality of `CodeActResponseParser`.
|
|
"""
|
|
|
|
import json
|
|
|
|
from litellm import (
|
|
ChatCompletionToolParam,
|
|
ModelResponse,
|
|
)
|
|
|
|
from openhands.agenthub.codeact_agent.function_calling import combine_thought
|
|
from openhands.agenthub.codeact_agent.tools import FinishTool
|
|
from openhands.agenthub.loc_agent.tools import (
|
|
SearchEntityTool,
|
|
SearchRepoTool,
|
|
create_explore_tree_structure_tool,
|
|
)
|
|
from openhands.core.exceptions import (
|
|
FunctionCallNotExistsError,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.events.action import (
|
|
Action,
|
|
AgentFinishAction,
|
|
IPythonRunCellAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.tool import ToolCallMetadata
|
|
|
|
|
|
def response_to_actions(
|
|
response: ModelResponse,
|
|
mcp_tool_names: list[str] | None = None,
|
|
) -> list[Action]:
|
|
actions: list[Action] = []
|
|
assert len(response.choices) == 1, 'Only one choice is supported for now'
|
|
choice = response.choices[0]
|
|
assistant_msg = choice.message
|
|
|
|
if hasattr(assistant_msg, 'tool_calls') and assistant_msg.tool_calls:
|
|
# Check if there's assistant_msg.content. If so, add it to the thought
|
|
thought = ''
|
|
if isinstance(assistant_msg.content, str):
|
|
thought = assistant_msg.content
|
|
elif isinstance(assistant_msg.content, list):
|
|
for msg in assistant_msg.content:
|
|
if msg['type'] == 'text':
|
|
thought += msg['text']
|
|
|
|
# Process each tool call to OpenHands action
|
|
for i, tool_call in enumerate(assistant_msg.tool_calls):
|
|
action: Action
|
|
logger.debug(f'Tool call in function_calling.py: {tool_call}')
|
|
try:
|
|
arguments = json.loads(tool_call.function.arguments)
|
|
except json.decoder.JSONDecodeError as e:
|
|
raise RuntimeError(
|
|
f'Failed to parse tool call arguments: {tool_call.function.arguments}'
|
|
) from e
|
|
|
|
# ================================================
|
|
# LocAgent's Tools
|
|
# ================================================
|
|
ALL_FUNCTIONS = [
|
|
'explore_tree_structure',
|
|
'search_code_snippets',
|
|
'get_entity_contents',
|
|
]
|
|
if tool_call.function.name in ALL_FUNCTIONS:
|
|
# We implement this in agent_skills, which can be used via Jupyter
|
|
func_name = tool_call.function.name
|
|
code = f'print({func_name}(**{arguments}))'
|
|
logger.debug(f'TOOL CALL: {func_name} with code: {code}')
|
|
action = IPythonRunCellAction(code=code)
|
|
|
|
# ================================================
|
|
# AgentFinishAction
|
|
# ================================================
|
|
elif tool_call.function.name == FinishTool['function']['name']:
|
|
action = AgentFinishAction(
|
|
final_thought=arguments.get('message', ''),
|
|
)
|
|
else:
|
|
raise FunctionCallNotExistsError(
|
|
f'Tool {tool_call.function.name} is not registered. (arguments: {arguments}). Please check the tool name and retry with an existing tool.'
|
|
)
|
|
|
|
# We only add thought to the first action
|
|
if i == 0:
|
|
action = combine_thought(action, thought)
|
|
# Add metadata for tool calling
|
|
action.tool_call_metadata = ToolCallMetadata(
|
|
tool_call_id=tool_call.id,
|
|
function_name=tool_call.function.name,
|
|
model_response=response,
|
|
total_calls_in_response=len(assistant_msg.tool_calls),
|
|
)
|
|
actions.append(action)
|
|
else:
|
|
actions.append(
|
|
MessageAction(
|
|
content=str(assistant_msg.content) if assistant_msg.content else '',
|
|
wait_for_response=True,
|
|
)
|
|
)
|
|
|
|
# Add response id to actions
|
|
# This will ensure we can match both actions without tool calls (e.g. MessageAction)
|
|
# and actions with tool calls (e.g. CmdRunAction, IPythonRunCellAction, etc.)
|
|
# with the token usage data
|
|
for action in actions:
|
|
action.response_id = response.id
|
|
|
|
assert len(actions) >= 1
|
|
return actions
|
|
|
|
|
|
def get_tools() -> list[ChatCompletionToolParam]:
|
|
tools = [FinishTool]
|
|
tools.append(SearchRepoTool)
|
|
tools.append(SearchEntityTool)
|
|
tools.append(create_explore_tree_structure_tool(use_simplified_description=True))
|
|
return tools
|