mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
365 lines
15 KiB
Python
365 lines
15 KiB
Python
from litellm import ModelResponse
|
|
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.message import ImageContent, Message, TextContent
|
|
from openhands.core.schema import ActionType
|
|
from openhands.events.action import (
|
|
Action,
|
|
AgentDelegateAction,
|
|
AgentFinishAction,
|
|
BrowseInteractiveAction,
|
|
BrowseURLAction,
|
|
CmdRunAction,
|
|
FileEditAction,
|
|
FileReadAction,
|
|
IPythonRunCellAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.event import Event
|
|
from openhands.events.observation import (
|
|
AgentCondensationObservation,
|
|
AgentDelegateObservation,
|
|
BrowserOutputObservation,
|
|
CmdOutputObservation,
|
|
FileEditObservation,
|
|
FileReadObservation,
|
|
IPythonRunCellObservation,
|
|
UserRejectObservation,
|
|
)
|
|
from openhands.events.observation.error import ErrorObservation
|
|
from openhands.events.observation.observation import Observation
|
|
from openhands.events.serialization.event import truncate_content
|
|
|
|
|
|
def events_to_messages(
|
|
events: list[Event],
|
|
max_message_chars: int | None = None,
|
|
vision_is_active: bool = False,
|
|
enable_som_visual_browsing: bool = False,
|
|
) -> list[Message]:
|
|
"""Converts a list of events into a list of messages that can be sent to the LLM.
|
|
|
|
Ensures that tool call actions are processed correctly in function calling mode.
|
|
|
|
Args:
|
|
events: A list of events to convert. Each event can be an Action or Observation.
|
|
max_message_chars: The maximum number of characters in the content of an event included in the prompt to the LLM.
|
|
Larger observations are truncated.
|
|
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included.
|
|
enable_som_visual_browsing: Whether to enable visual browsing for the SOM model.
|
|
"""
|
|
messages = []
|
|
|
|
pending_tool_call_action_messages: dict[str, Message] = {}
|
|
tool_call_id_to_message: dict[str, Message] = {}
|
|
|
|
for event in events:
|
|
# create a regular message from an event
|
|
if isinstance(event, Action):
|
|
messages_to_add = get_action_message(
|
|
action=event,
|
|
pending_tool_call_action_messages=pending_tool_call_action_messages,
|
|
vision_is_active=vision_is_active,
|
|
)
|
|
elif isinstance(event, Observation):
|
|
messages_to_add = get_observation_message(
|
|
obs=event,
|
|
tool_call_id_to_message=tool_call_id_to_message,
|
|
max_message_chars=max_message_chars,
|
|
vision_is_active=vision_is_active,
|
|
enable_som_visual_browsing=enable_som_visual_browsing,
|
|
)
|
|
else:
|
|
raise ValueError(f'Unknown event type: {type(event)}')
|
|
|
|
# Check pending tool call action messages and see if they are complete
|
|
_response_ids_to_remove = []
|
|
for (
|
|
response_id,
|
|
pending_message,
|
|
) in pending_tool_call_action_messages.items():
|
|
assert pending_message.tool_calls is not None, (
|
|
'Tool calls should NOT be None when function calling is enabled & the message is considered pending tool call. '
|
|
f'Pending message: {pending_message}'
|
|
)
|
|
if all(
|
|
tool_call.id in tool_call_id_to_message
|
|
for tool_call in pending_message.tool_calls
|
|
):
|
|
# If complete:
|
|
# -- 1. Add the message that **initiated** the tool calls
|
|
messages_to_add.append(pending_message)
|
|
# -- 2. Add the tool calls **results***
|
|
for tool_call in pending_message.tool_calls:
|
|
messages_to_add.append(tool_call_id_to_message[tool_call.id])
|
|
tool_call_id_to_message.pop(tool_call.id)
|
|
_response_ids_to_remove.append(response_id)
|
|
# Cleanup the processed pending tool messages
|
|
for response_id in _response_ids_to_remove:
|
|
pending_tool_call_action_messages.pop(response_id)
|
|
|
|
messages += messages_to_add
|
|
|
|
return messages
|
|
|
|
|
|
def get_action_message(
|
|
action: Action,
|
|
pending_tool_call_action_messages: dict[str, Message],
|
|
vision_is_active: bool = False,
|
|
) -> list[Message]:
|
|
"""Converts an action into a message format that can be sent to the LLM.
|
|
|
|
This method handles different types of actions and formats them appropriately:
|
|
1. For tool-based actions (AgentDelegate, CmdRun, IPythonRunCell, FileEdit) and agent-sourced AgentFinish:
|
|
- In function calling mode: Stores the LLM's response in pending_tool_call_action_messages
|
|
- In non-function calling mode: Creates a message with the action string
|
|
2. For MessageActions: Creates a message with the text content and optional image content
|
|
|
|
Args:
|
|
action: The action to convert. Can be one of:
|
|
- CmdRunAction: For executing bash commands
|
|
- IPythonRunCellAction: For running IPython code
|
|
- FileEditAction: For editing files
|
|
- FileReadAction: For reading files using openhands-aci commands
|
|
- BrowseInteractiveAction: For browsing the web
|
|
- AgentFinishAction: For ending the interaction
|
|
- MessageAction: For sending messages
|
|
|
|
pending_tool_call_action_messages: Dictionary mapping response IDs to their corresponding messages.
|
|
Used in function calling mode to track tool calls that are waiting for their results.
|
|
|
|
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included
|
|
|
|
Returns:
|
|
list[Message]: A list containing the formatted message(s) for the action.
|
|
May be empty if the action is handled as a tool call in function calling mode.
|
|
|
|
Note:
|
|
In function calling mode, tool-based actions are stored in pending_tool_call_action_messages
|
|
rather than being returned immediately. They will be processed later when all corresponding
|
|
tool call results are available.
|
|
"""
|
|
# create a regular message from an event
|
|
if isinstance(
|
|
action,
|
|
(
|
|
AgentDelegateAction,
|
|
IPythonRunCellAction,
|
|
FileEditAction,
|
|
FileReadAction,
|
|
BrowseInteractiveAction,
|
|
BrowseURLAction,
|
|
),
|
|
) or (isinstance(action, CmdRunAction) and action.source == 'agent'):
|
|
tool_metadata = action.tool_call_metadata
|
|
assert tool_metadata is not None, (
|
|
'Tool call metadata should NOT be None when function calling is enabled. Action: '
|
|
+ str(action)
|
|
)
|
|
|
|
llm_response: ModelResponse = tool_metadata.model_response
|
|
assistant_msg = llm_response.choices[0].message
|
|
|
|
# Add the LLM message (assistant) that initiated the tool calls
|
|
# (overwrites any previous message with the same response_id)
|
|
logger.debug(
|
|
f'Tool calls type: {type(assistant_msg.tool_calls)}, value: {assistant_msg.tool_calls}'
|
|
)
|
|
pending_tool_call_action_messages[llm_response.id] = Message(
|
|
role=assistant_msg.role,
|
|
# tool call content SHOULD BE a string
|
|
content=[TextContent(text=assistant_msg.content or '')]
|
|
if assistant_msg.content is not None
|
|
else [],
|
|
tool_calls=assistant_msg.tool_calls,
|
|
)
|
|
return []
|
|
elif isinstance(action, AgentFinishAction):
|
|
role = 'user' if action.source == 'user' else 'assistant'
|
|
|
|
# when agent finishes, it has tool_metadata
|
|
# which has already been executed, and it doesn't have a response
|
|
# when the user finishes (/exit), we don't have tool_metadata
|
|
tool_metadata = action.tool_call_metadata
|
|
if tool_metadata is not None:
|
|
# take the response message from the tool call
|
|
assistant_msg = tool_metadata.model_response.choices[0].message
|
|
content = assistant_msg.content or ''
|
|
|
|
# save content if any, to thought
|
|
if action.thought:
|
|
if action.thought != content:
|
|
action.thought += '\n' + content
|
|
else:
|
|
action.thought = content
|
|
|
|
# remove the tool call metadata
|
|
action.tool_call_metadata = None
|
|
return [
|
|
Message(
|
|
role=role,
|
|
content=[TextContent(text=action.thought)],
|
|
)
|
|
]
|
|
elif isinstance(action, MessageAction):
|
|
role = 'user' if action.source == 'user' else 'assistant'
|
|
content = [TextContent(text=action.content or '')]
|
|
if vision_is_active and action.image_urls:
|
|
content.append(ImageContent(image_urls=action.image_urls))
|
|
return [
|
|
Message(
|
|
role=role,
|
|
content=content,
|
|
)
|
|
]
|
|
elif isinstance(action, CmdRunAction) and action.source == 'user':
|
|
content = [TextContent(text=f'User executed the command:\n{action.command}')]
|
|
return [
|
|
Message(
|
|
role='user',
|
|
content=content,
|
|
)
|
|
]
|
|
return []
|
|
|
|
|
|
def get_observation_message(
|
|
obs: Observation,
|
|
tool_call_id_to_message: dict[str, Message],
|
|
max_message_chars: int | None = None,
|
|
vision_is_active: bool = False,
|
|
enable_som_visual_browsing: bool = False,
|
|
) -> list[Message]:
|
|
"""Converts an observation into a message format that can be sent to the LLM.
|
|
|
|
This method handles different types of observations and formats them appropriately:
|
|
- CmdOutputObservation: Formats command execution results with exit codes
|
|
- IPythonRunCellObservation: Formats IPython cell execution results, replacing base64 images
|
|
- FileEditObservation: Formats file editing results
|
|
- FileReadObservation: Formats file reading results from openhands-aci
|
|
- AgentDelegateObservation: Formats results from delegated agent tasks
|
|
- ErrorObservation: Formats error messages from failed actions
|
|
- UserRejectObservation: Formats user rejection messages
|
|
|
|
In function calling mode, observations with tool_call_metadata are stored in
|
|
tool_call_id_to_message for later processing instead of being returned immediately.
|
|
|
|
Args:
|
|
obs: The observation to convert
|
|
tool_call_id_to_message: Dictionary mapping tool call IDs to their corresponding messages (used in function calling mode)
|
|
max_message_chars: The maximum number of characters in the content of an observation included in the prompt to the LLM
|
|
vision_is_active: Whether vision is active in the LLM. If True, image URLs will be included
|
|
enable_som_visual_browsing: Whether to enable visual browsing for the SOM model
|
|
|
|
Returns:
|
|
list[Message]: A list containing the formatted message(s) for the observation.
|
|
May be empty if the observation is handled as a tool response in function calling mode.
|
|
|
|
Raises:
|
|
ValueError: If the observation type is unknown
|
|
"""
|
|
message: Message
|
|
|
|
if isinstance(obs, CmdOutputObservation):
|
|
# if it doesn't have tool call metadata, it was triggered by a user action
|
|
if obs.tool_call_metadata is None:
|
|
text = truncate_content(
|
|
f'\nObserved result of command executed by user:\n{obs.to_agent_observation()}',
|
|
max_message_chars,
|
|
)
|
|
else:
|
|
text = truncate_content(obs.to_agent_observation(), max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, IPythonRunCellObservation):
|
|
text = obs.content
|
|
# replace base64 images with a placeholder
|
|
splitted = text.split('\n')
|
|
for i, line in enumerate(splitted):
|
|
if ' already displayed to user'
|
|
)
|
|
text = '\n'.join(splitted)
|
|
text = truncate_content(text, max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, FileEditObservation):
|
|
text = truncate_content(str(obs), max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, FileReadObservation):
|
|
message = Message(
|
|
role='user', content=[TextContent(text=obs.content)]
|
|
) # Content is already truncated by openhands-aci
|
|
elif isinstance(obs, BrowserOutputObservation):
|
|
text = obs.get_agent_obs_text()
|
|
if (
|
|
obs.trigger_by_action == ActionType.BROWSE_INTERACTIVE
|
|
and obs.set_of_marks is not None
|
|
and len(obs.set_of_marks) > 0
|
|
and enable_som_visual_browsing
|
|
and vision_is_active
|
|
):
|
|
text += 'Image: Current webpage screenshot (Note that only visible portion of webpage is present in the screenshot. You may need to scroll to view the remaining portion of the web-page.)\n'
|
|
message = Message(
|
|
role='user',
|
|
content=[
|
|
TextContent(text=text),
|
|
ImageContent(image_urls=[obs.set_of_marks]),
|
|
],
|
|
)
|
|
else:
|
|
message = Message(
|
|
role='user',
|
|
content=[TextContent(text=text)],
|
|
)
|
|
elif isinstance(obs, AgentDelegateObservation):
|
|
text = truncate_content(
|
|
obs.outputs['content'] if 'content' in obs.outputs else '',
|
|
max_message_chars,
|
|
)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, ErrorObservation):
|
|
text = truncate_content(obs.content, max_message_chars)
|
|
text += '\n[Error occurred in processing last action]'
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, UserRejectObservation):
|
|
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
|
|
text += '\n[Last action has been rejected by the user]'
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
elif isinstance(obs, AgentCondensationObservation):
|
|
text = truncate_content(obs.content, max_message_chars)
|
|
message = Message(role='user', content=[TextContent(text=text)])
|
|
else:
|
|
# If an observation message is not returned, it will cause an error
|
|
# when the LLM tries to return the next message
|
|
raise ValueError(f'Unknown observation type: {type(obs)}')
|
|
|
|
# Update the message as tool response properly
|
|
if (tool_call_metadata := obs.tool_call_metadata) is not None:
|
|
tool_call_id_to_message[tool_call_metadata.tool_call_id] = Message(
|
|
role='tool',
|
|
content=message.content,
|
|
tool_call_id=tool_call_metadata.tool_call_id,
|
|
name=tool_call_metadata.function_name,
|
|
)
|
|
# No need to return the observation message
|
|
# because it will be added by get_action_message when all the corresponding
|
|
# tool calls in the SAME request are processed
|
|
return []
|
|
|
|
return [message]
|
|
|
|
|
|
def apply_prompt_caching(messages: list[Message]) -> None:
|
|
"""Applies caching breakpoints to the messages.
|
|
|
|
For new Anthropic API, we only need to mark the last user or tool message as cacheable.
|
|
"""
|
|
# NOTE: this is only needed for anthropic
|
|
for message in reversed(messages):
|
|
if message.role in ('user', 'tool'):
|
|
message.content[
|
|
-1
|
|
].cache_prompt = True # Last item inside the message content
|
|
break
|