Xingyao Wang ca424ec15d
[agent] Add LLM risk analyzer (#9349)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Graham Neubig <neubig@gmail.com>
Co-authored-by: llamantino <213239228+llamantino@users.noreply.github.com>
Co-authored-by: mamoodi <mamoodiha@gmail.com>
Co-authored-by: Tim O'Farrell <tofarr@gmail.com>
Co-authored-by: Hiep Le <69354317+hieptl@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Ryan H. Tran <descience.thh10@gmail.com>
Co-authored-by: Neeraj Panwar <49247372+npneeraj@users.noreply.github.com>
Co-authored-by: sp.wack <83104063+amanape@users.noreply.github.com>
Co-authored-by: Insop <1240382+insop@users.noreply.github.com>
Co-authored-by: test <test@test.com>
Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
Co-authored-by: Zhonghao Jiang <zhonghao.J@outlook.com>
Co-authored-by: Ray Myers <ray.myers@gmail.com>
2025-08-22 14:02:36 +00:00

184 lines
6.3 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING
from openhands.llm.llm_registry import LLMRegistry
if TYPE_CHECKING:
from openhands.controller.state.state import State
from openhands.events.action import Action
from openhands.events.action.message import SystemMessageAction
from openhands.utils.prompt import PromptManager
from litellm import ChatCompletionToolParam
from openhands.core.config import AgentConfig
from openhands.core.exceptions import (
AgentAlreadyRegisteredError,
AgentNotRegisteredError,
)
from openhands.core.logger import openhands_logger as logger
from openhands.events.event import EventSource
from openhands.runtime.plugins import PluginRequirement
class Agent(ABC):
DEPRECATED = False
"""
This abstract base class is an general interface for an agent dedicated to
executing a specific instruction and allowing human interaction with the
agent during execution.
It tracks the execution status and maintains a history of interactions.
"""
_registry: dict[str, type['Agent']] = {}
sandbox_plugins: list[PluginRequirement] = []
config_model: type[AgentConfig] = AgentConfig
"""Class field that specifies the config model to use for the agent. Subclasses may override with a derived config model if needed."""
def __init__(
self,
config: AgentConfig,
llm_registry: LLMRegistry,
):
self.llm = llm_registry.get_llm_from_agent_config('agent', config)
self.llm_registry = llm_registry
self.config = config
self._complete = False
self._prompt_manager: 'PromptManager' | None = None
self.mcp_tools: dict[str, ChatCompletionToolParam] = {}
self.tools: list = []
@property
def prompt_manager(self) -> 'PromptManager':
if self._prompt_manager is None:
raise ValueError(f'Prompt manager not initialized for agent {self.name}')
return self._prompt_manager
def get_system_message(self) -> 'SystemMessageAction | None':
"""Returns a SystemMessageAction containing the system message and tools.
This will be added to the event stream as the first message.
Returns:
SystemMessageAction: The system message action with content and tools
None: If there was an error generating the system message
"""
# Import here to avoid circular imports
from openhands.events.action.message import SystemMessageAction
try:
if not self.prompt_manager:
logger.warning(
f'[{self.name}] Prompt manager not initialized before getting system message'
)
return None
system_message = self.prompt_manager.get_system_message(
cli_mode=self.config.cli_mode
)
# Get tools if available
tools = getattr(self, 'tools', None)
system_message_action = SystemMessageAction(
content=system_message, tools=tools, agent_class=self.name
)
# Set the source attribute
system_message_action._source = EventSource.AGENT # type: ignore
return system_message_action
except Exception as e:
logger.warning(f'[{self.name}] Failed to generate system message: {e}')
return None
@property
def complete(self) -> bool:
"""Indicates whether the current instruction execution is complete.
Returns:
- complete (bool): True if execution is complete; False otherwise.
"""
return self._complete
@abstractmethod
def step(self, state: 'State') -> 'Action':
"""Starts the execution of the assigned instruction. This method should
be implemented by subclasses to define the specific execution logic.
"""
pass
def reset(self) -> None:
"""Resets the agent's execution status."""
# Only reset the completion status, not the LLM metrics
self._complete = False
@property
def name(self) -> str:
return self.__class__.__name__
@classmethod
def register(cls, name: str, agent_cls: type['Agent']) -> None:
"""Registers an agent class in the registry.
Parameters:
- name (str): The name to register the class under.
- agent_cls (Type['Agent']): The class to register.
Raises:
- AgentAlreadyRegisteredError: If name already registered
"""
if name in cls._registry:
raise AgentAlreadyRegisteredError(name)
cls._registry[name] = agent_cls
@classmethod
def get_cls(cls, name: str) -> type['Agent']:
"""Retrieves an agent class from the registry.
Parameters:
- name (str): The name of the class to retrieve
Returns:
- agent_cls (Type['Agent']): The class registered under the specified name.
Raises:
- AgentNotRegisteredError: If name not registered
"""
if name not in cls._registry:
raise AgentNotRegisteredError(name)
return cls._registry[name]
@classmethod
def list_agents(cls) -> list[str]:
"""Retrieves the list of all agent names from the registry.
Raises:
- AgentNotRegisteredError: If no agent is registered
"""
if not bool(cls._registry):
raise AgentNotRegisteredError()
return list(cls._registry.keys())
def set_mcp_tools(self, mcp_tools: list[dict]) -> None:
"""Sets the list of MCP tools for the agent.
Args:
- mcp_tools (list[dict]): The list of MCP tools.
"""
logger.info(
f'Setting {len(mcp_tools)} MCP tools for agent {self.name}: {[tool["function"]["name"] for tool in mcp_tools]}'
)
for tool in mcp_tools:
_tool = ChatCompletionToolParam(**tool)
if _tool['function']['name'] in self.mcp_tools:
logger.warning(
f'Tool {_tool["function"]["name"]} already exists, skipping'
)
continue
self.mcp_tools[_tool['function']['name']] = _tool
self.tools.append(_tool)
logger.info(
f'Tools updated for agent {self.name}, total {len(self.tools)}: {[tool["function"]["name"] for tool in self.tools]}'
)