mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
242 lines
7.6 KiB
Python
242 lines
7.6 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
from typing import Any
|
|
|
|
import browsergym.miniwob # noqa F401 register miniwob tasks as gym environments
|
|
import gymnasium as gym
|
|
import pandas as pd
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
get_default_sandbox_config_for_eval,
|
|
get_metrics,
|
|
get_openhands_config_for_eval,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
update_llm_config_for_completions_logging,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
OpenHandsConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import (
|
|
BrowseInteractiveAction,
|
|
CmdRunAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.observation import (
|
|
BrowserOutputObservation,
|
|
CmdOutputObservation,
|
|
)
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.runtime.browser.browser_env import (
|
|
BROWSER_EVAL_GET_GOAL_ACTION,
|
|
BROWSER_EVAL_GET_REWARDS_ACTION,
|
|
)
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
SUPPORTED_AGENT_CLS = {'BrowsingAgent', 'CodeActAgent'}
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
'BrowsingAgent': 'Continue the task. IMPORTANT: do not talk to the user until you have finished the task',
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
env_id: str,
|
|
) -> OpenHandsConfig:
|
|
sandbox_config = get_default_sandbox_config_for_eval()
|
|
sandbox_config.base_container_image = 'xingyaoww/od-eval-miniwob:v1.0'
|
|
config = get_openhands_config_for_eval(
|
|
metadata=metadata,
|
|
runtime=os.environ.get('RUNTIME', 'docker'),
|
|
sandbox_config=sandbox_config,
|
|
)
|
|
config.set_llm_config(
|
|
update_llm_config_for_completions_logging(
|
|
metadata.llm_config, metadata.eval_output_dir, env_id
|
|
)
|
|
)
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
) -> tuple[str, BrowserOutputObservation]:
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}')
|
|
obs: CmdOutputObservation
|
|
|
|
# Set instance id
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
goal = obs.content
|
|
|
|
# Run noop to get the initial browser observation (e.g., the page URL & content)
|
|
action = BrowseInteractiveAction(browser_actions='noop(1000)')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}')
|
|
return goal, obs
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}')
|
|
obs: CmdOutputObservation
|
|
|
|
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}')
|
|
return {
|
|
'rewards': json.loads(obs.content),
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
env_id = instance.instance_id
|
|
config = get_config(metadata, env_id)
|
|
|
|
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, env_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {env_id}.')
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
task_str, obs = initialize_runtime(runtime)
|
|
|
|
task_str += (
|
|
f'\nInitial browser state (output of `noop(1000)`):\n{obs.get_agent_obs_text()}'
|
|
)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(
|
|
content=task_str
|
|
), # take output from initialize_runtime
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
|
|
metadata.agent_class
|
|
],
|
|
)
|
|
)
|
|
|
|
# ======= Attempt to evaluate the agent's environment impact =======
|
|
|
|
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
|
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = get_metrics(state)
|
|
|
|
# Instruction is the first message from the USER
|
|
instruction = ''
|
|
for event in state.history:
|
|
if isinstance(event, MessageAction):
|
|
instruction = event.content
|
|
break
|
|
|
|
return_val = complete_runtime(runtime)
|
|
logger.info(f'Return value from complete_runtime: {return_val}')
|
|
reward = max(return_val['rewards'], default=0)
|
|
|
|
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
|
# for compatibility with the existing output format, we can remake the pairs here
|
|
# remove when it becomes unnecessary
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
# Save the output
|
|
output = EvalOutput(
|
|
instance_id=env_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'reward': reward,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
dataset = pd.DataFrame(
|
|
{
|
|
'instance_id': [
|
|
id
|
|
for id in gym.envs.registry.keys()
|
|
if id.startswith('browsergym/miniwob')
|
|
]
|
|
}
|
|
)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
# modify_params must be False for evaluation purpose, for reproducibility and accuracy of results
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'miniwob',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|