Jirka Borovec 0c2ebfd6e1
Ruff: use I rule for isort (#1410)
Ruff: use I rule for isort
2024-04-29 15:41:58 -07:00

113 lines
3.6 KiB
Python

from typing import List
from opendevin.action import (
Action,
AgentThinkAction,
FileReadAction,
FileWriteAction,
)
from opendevin.agent import Agent
from opendevin.llm.llm import LLM
from opendevin.observation import Observation
from opendevin.state import State
from .parser import parse_command
from .prompts import (
CONTEXT_PROMPT,
MEMORY_FORMAT,
NO_ACTION,
STEP_PROMPT,
SYSTEM_MESSAGE,
)
class SWEAgent(Agent):
"""
An attempt to recreate swe_agent with output parsing, prompting style, and Application Computer Interface (ACI).
SWE-agent includes ACI functions like 'goto', 'search_for', 'edit', 'scroll', 'run'
"""
def __init__(self, llm: LLM):
super().__init__(llm)
self.memory_window = 4
self.max_retries = 2
self.running_memory: List[str] = []
self.cur_file: str = ''
self.cur_line: int = 0
def _remember(self, action: Action, observation: Observation) -> None:
"""Agent has a limited memory of the few steps implemented as a queue"""
memory = MEMORY_FORMAT(action.to_memory(), observation.to_memory())
self.running_memory.append(memory)
def _think_act(self, messages: List[dict]) -> tuple[Action, str]:
resp = self.llm.completion(
messages=messages,
temperature=0.05,
)
action_resp = resp['choices'][0]['message']['content']
print(f"\033[1m\033[91m{resp['usage']}\033[0m")
print('\n==== RAW OUTPUT ====',
f'\033[96m{action_resp}\033[0m',
'==== END RAW ====\n', sep='\n')
return parse_command(action_resp, self.cur_file, self.cur_line)
def _update(self, action: Action) -> None:
if isinstance(action, (FileReadAction, FileWriteAction)):
self.cur_file = action.path
self.cur_line = action.start
def step(self, state: State) -> Action:
"""
SWE-Agent step:
1. Get context - past actions, custom commands, current step
2. Perform think-act - prompt model for action and reasoning
3. Catch errors - ensure model takes action (5 attempts max)
"""
for prev_action, obs in state.updated_info:
self._remember(prev_action, obs)
prompt = STEP_PROMPT(
state.plan.main_goal,
self.cur_file,
self.cur_line
)
msgs = [
{'content': SYSTEM_MESSAGE, 'role': 'system'},
{'content': prompt, 'role': 'user'}
]
if len(self.running_memory) > 0:
context = CONTEXT_PROMPT(
self.running_memory,
self.memory_window
)
msgs.insert(1, {'content': context, 'role': 'user'})
# clrs = [''] * (len(msgs)-2) + ['\033[0;36m', '\033[0;35m']
# print('\n\n'.join([c+m['content']+'\033[0m' for c, m in zip(clrs, msgs)]))
action, thought = self._think_act(messages=msgs)
start_msg_len = len(msgs)
while not action and len(msgs) < self.max_retries + start_msg_len:
error = NO_ACTION(thought)
error_msg = {'content': error, 'role': 'user'}
msgs.append(error_msg)
action, thought = self._think_act(messages=msgs)
if not action:
action = AgentThinkAction(thought)
self._update(action)
self.latest_action = action
return action
def search_memory(self, query: str) -> List[str]:
return [item for item in self.running_memory if query in item]
def reset(self) -> None:
"""Used to reset the agent"""
self.running_memory = []
super().reset()