import argparse import os import pathlib import platform import sys from ast import literal_eval from types import UnionType from typing import Any, MutableMapping, get_args, get_origin, get_type_hints from uuid import uuid4 import toml from dotenv import load_dotenv from pydantic import BaseModel, SecretStr, ValidationError from openhands.core import logger from openhands.core.config.agent_config import AgentConfig from openhands.core.config.arg_utils import get_headless_parser from openhands.core.config.condenser_config import ( CondenserConfig, condenser_config_from_toml_section, create_condenser_config, ) from openhands.core.config.extended_config import ExtendedConfig from openhands.core.config.kubernetes_config import KubernetesConfig from openhands.core.config.llm_config import LLMConfig from openhands.core.config.mcp_config import MCPConfig from openhands.core.config.model_routing_config import ModelRoutingConfig from openhands.core.config.openhands_config import OpenHandsConfig from openhands.core.config.sandbox_config import SandboxConfig from openhands.core.config.security_config import SecurityConfig from openhands.storage import get_file_store from openhands.storage.files import FileStore from openhands.utils.import_utils import get_impl JWT_SECRET = '.jwt_secret' load_dotenv() def load_from_env( cfg: OpenHandsConfig, env_or_toml_dict: dict | MutableMapping[str, str] ) -> None: """Sets config attributes from environment variables or TOML dictionary. Reads environment-style variables and updates the config attributes accordingly. Supports configuration of LLM settings (e.g., LLM_BASE_URL), agent settings (e.g., AGENT_MEMORY_ENABLED), sandbox settings (e.g., SANDBOX_TIMEOUT), and more. Args: cfg: The OpenHandsConfig object to set attributes on. env_or_toml_dict: The environment variables or a config.toml dict. """ def get_optional_type(union_type: UnionType | type | None) -> type | None: """Returns the non-None type from a Union.""" if union_type is None: return None if get_origin(union_type) is UnionType: types = get_args(union_type) return next((t for t in types if t is not type(None)), None) if isinstance(union_type, type): return union_type return None # helper function to set attributes based on env vars def set_attr_from_env(sub_config: BaseModel, prefix: str = '') -> None: """Set attributes of a config model based on environment variables.""" for field_name, field_info in sub_config.__class__.model_fields.items(): field_value = getattr(sub_config, field_name) field_type = field_info.annotation # compute the expected env var name from the prefix and field name # e.g. LLM_BASE_URL env_var_name = (prefix + field_name).upper() cast_value: Any if isinstance(field_value, BaseModel): set_attr_from_env(field_value, prefix=field_name + '_') elif env_var_name in env_or_toml_dict: # convert the env var to the correct type and set it value = env_or_toml_dict[env_var_name] # skip empty config values (fall back to default) if not value: continue try: # if it's an optional type, get the non-None type if get_origin(field_type) is UnionType: field_type = get_optional_type(field_type) # Attempt to cast the env var to type hinted in the dataclass if field_type is bool: cast_value = str(value).lower() in ['true', '1'] # parse dicts and lists like SANDBOX_RUNTIME_STARTUP_ENV_VARS and SANDBOX_RUNTIME_EXTRA_BUILD_ARGS elif ( get_origin(field_type) is dict or get_origin(field_type) is list or field_type is dict or field_type is list ): cast_value = literal_eval(value) # If it's a list of Pydantic models if get_origin(field_type) is list: inner_type = get_args(field_type)[ 0 ] # e.g., MCPSHTTPServerConfig if isinstance(inner_type, type) and issubclass( inner_type, BaseModel ): cast_value = [ inner_type(**item) if isinstance(item, dict) else item for item in cast_value ] else: if field_type is not None: cast_value = field_type(value) setattr(sub_config, field_name, cast_value) except (ValueError, TypeError): logger.openhands_logger.error( f'Error setting env var {env_var_name}={value}: check that the value is of the right type' ) # Start processing from the root of the config object set_attr_from_env(cfg) # load default LLM config from env default_llm_config = cfg.get_llm_config() set_attr_from_env(default_llm_config, 'LLM_') # load default agent config from env default_agent_config = cfg.get_agent_config() set_attr_from_env(default_agent_config, 'AGENT_') def load_from_toml(cfg: OpenHandsConfig, toml_file: str = 'config.toml') -> None: """Load the config from the toml file. Supports both styles of config vars. Args: cfg: The OpenHandsConfig object to update attributes of. toml_file: The path to the toml file. Defaults to 'config.toml'. See Also: - config.template.toml for the full list of config options. """ # try to read the config.toml file into the config object try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError: return except toml.TomlDecodeError as e: logger.openhands_logger.warning( f'Cannot parse config from toml, toml values have not been applied.\nError: {e}', ) return # Check for the [core] section if 'core' not in toml_config: logger.openhands_logger.warning( f'No [core] section found in {toml_file}. Core settings will use defaults.' ) core_config = {} else: core_config = toml_config['core'] # Process core section if present cfg_type_hints = get_type_hints(cfg.__class__) for key, value in core_config.items(): if hasattr(cfg, key): # Get expected type of the attribute expected_type = cfg_type_hints.get(key, None) # Check if expected_type is a Union that includes SecretStr and value is str, e.g. search_api_key if expected_type: origin = get_origin(expected_type) args = get_args(expected_type) if origin is UnionType and SecretStr in args and isinstance(value, str): value = SecretStr(value) elif expected_type is SecretStr and isinstance(value, str): value = SecretStr(value) setattr(cfg, key, value) else: logger.openhands_logger.warning( f'Unknown config key "{key}" in [core] section' ) # Process agent section if present if 'agent' in toml_config: try: agent_mapping = AgentConfig.from_toml_section(toml_config['agent']) for agent_key, agent_conf in agent_mapping.items(): cfg.set_agent_config(agent_conf, agent_key) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [agent] config from toml, values have not been applied.\nError: {e}' ) # Process llm section if present if 'llm' in toml_config: try: llm_mapping = LLMConfig.from_toml_section(toml_config['llm']) for llm_key, llm_conf in llm_mapping.items(): cfg.set_llm_config(llm_conf, llm_key) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [llm] config from toml, values have not been applied.\nError: {e}' ) # Process security section if present if 'security' in toml_config: try: security_mapping = SecurityConfig.from_toml_section(toml_config['security']) # We only use the base security config for now if 'security' in security_mapping: cfg.security = security_mapping['security'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [security] config from toml, values have not been applied.\nError: {e}' ) except ValueError: # Re-raise ValueError from SecurityConfig.from_toml_section raise ValueError('Error in [security] section in config.toml') if 'model_routing' in toml_config: try: model_routing_mapping = ModelRoutingConfig.from_toml_section( toml_config['model_routing'] ) # We only use the base model routing config for now if 'model_routing' in model_routing_mapping: default_agent_config = cfg.get_agent_config() default_agent_config.model_routing = model_routing_mapping[ 'model_routing' ] # Construct the llms_for_routing by filtering llms with for_routing = True llms_for_routing_dict = {} for llm_name, llm_config in cfg.llms.items(): if llm_config and llm_config.for_routing: llms_for_routing_dict[llm_name] = llm_config default_agent_config.model_routing.llms_for_routing = ( llms_for_routing_dict ) logger.openhands_logger.debug( 'Default model routing configuration loaded from config toml and assigned to default agent' ) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [model_routing] config from toml, values have not been applied.\nError: {e}' ) # Process sandbox section if present if 'sandbox' in toml_config: try: sandbox_mapping = SandboxConfig.from_toml_section(toml_config['sandbox']) # We only use the base sandbox config for now if 'sandbox' in sandbox_mapping: cfg.sandbox = sandbox_mapping['sandbox'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [sandbox] config from toml, values have not been applied.\nError: {e}' ) except ValueError as e: # Re-raise ValueError from SandboxConfig.from_toml_section raise ValueError('Error in [sandbox] section in config.toml') from e # Process MCP sections if present if 'mcp' in toml_config: try: mcp_mapping = MCPConfig.from_toml_section(toml_config['mcp']) # We only use the base mcp config for now if 'mcp' in mcp_mapping: cfg.mcp = mcp_mapping['mcp'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse MCP config from toml, values have not been applied.\nError: {e}' ) except ValueError: # Re-raise ValueError from MCPConfig.from_toml_section raise ValueError('Error in MCP sections in config.toml') # Process kubernetes section if present if 'kubernetes' in toml_config: try: kubernetes_mapping = KubernetesConfig.from_toml_section( toml_config['kubernetes'] ) if 'kubernetes' in kubernetes_mapping: cfg.kubernetes = kubernetes_mapping['kubernetes'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [kubernetes] config from toml, values have not been applied.\nError: {e}' ) # Process condenser section if present if 'condenser' in toml_config: try: # Pass the LLM configs to the condenser config parser condenser_mapping = condenser_config_from_toml_section( toml_config['condenser'], cfg.llms ) # Assign the default condenser configuration to the default agent configuration if 'condenser' in condenser_mapping: # Get the default agent config and assign the condenser config to it default_agent_config = cfg.get_agent_config() default_agent_config.condenser = condenser_mapping['condenser'] logger.openhands_logger.debug( 'Default condenser configuration loaded from config toml and assigned to default agent' ) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [condenser] config from toml, values have not been applied.\nError: {e}' ) # If no condenser section is in toml but enable_default_condenser is True, # set LLMSummarizingCondenserConfig as default elif cfg.enable_default_condenser: from openhands.core.config.condenser_config import LLMSummarizingCondenserConfig # Get default agent config default_agent_config = cfg.get_agent_config() # Create default LLM summarizing condenser config default_condenser = LLMSummarizingCondenserConfig( llm_config=cfg.get_llm_config(), # Use default LLM config type='llm', ) # Set as default condenser default_agent_config.condenser = default_condenser logger.openhands_logger.debug( 'Default LLM summarizing condenser assigned to default agent (no condenser in config)' ) # Process extended section if present if 'extended' in toml_config: try: cfg.extended = ExtendedConfig(toml_config['extended']) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [extended] config from toml, values have not been applied.\nError: {e}' ) # Check for unknown sections known_sections = { 'core', 'extended', 'agent', 'llm', 'security', 'sandbox', 'condenser', 'mcp', 'kubernetes', 'model_routing', } for key in toml_config: if key.lower() not in known_sections: logger.openhands_logger.warning(f'Unknown section [{key}] in {toml_file}') def get_or_create_jwt_secret(file_store: FileStore) -> str: try: jwt_secret = file_store.read(JWT_SECRET) return jwt_secret except FileNotFoundError: new_secret = uuid4().hex file_store.write(JWT_SECRET, new_secret) return new_secret def finalize_config(cfg: OpenHandsConfig) -> None: """More tweaks to the config after it's been loaded.""" # Handle the sandbox.volumes parameter if cfg.workspace_base is not None or cfg.workspace_mount_path is not None: logger.openhands_logger.warning( 'DEPRECATED: The WORKSPACE_BASE and WORKSPACE_MOUNT_PATH environment variables are deprecated. ' "Please use SANDBOX_VOLUMES instead, e.g. 'SANDBOX_VOLUMES=/my/host/dir:/workspace:rw'" ) if cfg.sandbox.volumes is not None: # Split by commas to handle multiple mounts mounts = cfg.sandbox.volumes.split(',') # Check if any mount explicitly targets /workspace workspace_mount_found = False for mount in mounts: parts = mount.split(':') if len(parts) >= 2 and parts[1] == '/workspace': workspace_mount_found = True host_path = os.path.abspath(parts[0]) # Set the workspace_mount_path and workspace_mount_path_in_sandbox cfg.workspace_mount_path = host_path cfg.workspace_mount_path_in_sandbox = '/workspace' # Also set workspace_base cfg.workspace_base = host_path break # If no explicit /workspace mount was found, don't set any workspace mount # This allows users to mount volumes without affecting the workspace if not workspace_mount_found: logger.openhands_logger.debug( 'No explicit /workspace mount found in SANDBOX_VOLUMES. ' 'Using default workspace path in sandbox.' ) # Ensure workspace_mount_path and workspace_base are None to avoid # unintended mounting behavior cfg.workspace_mount_path = None cfg.workspace_base = None # Validate all mounts for mount in mounts: parts = mount.split(':') if len(parts) < 2 or len(parts) > 3: raise ValueError( f'Invalid mount format in sandbox.volumes: {mount}. ' f"Expected format: 'host_path:container_path[:mode]', e.g. '/my/host/dir:/workspace:rw'" ) # Handle the deprecated workspace_* parameters elif cfg.workspace_base is not None or cfg.workspace_mount_path is not None: if cfg.workspace_base is not None: cfg.workspace_base = os.path.abspath(cfg.workspace_base) if cfg.workspace_mount_path is None: cfg.workspace_mount_path = cfg.workspace_base if cfg.workspace_mount_rewrite: base = cfg.workspace_base or os.getcwd() parts = cfg.workspace_mount_rewrite.split(':') cfg.workspace_mount_path = base.replace(parts[0], parts[1]) # make sure log_completions_folder is an absolute path for llm in cfg.llms.values(): llm.log_completions_folder = os.path.abspath(llm.log_completions_folder) if cfg.sandbox.use_host_network and platform.system() == 'Darwin': logger.openhands_logger.warning( 'Please upgrade to Docker Desktop 4.29.0 or later to use host network mode on macOS. ' 'See https://github.com/docker/roadmap/issues/238#issuecomment-2044688144 for more information.' ) # make sure cache dir exists if cfg.cache_dir: pathlib.Path(cfg.cache_dir).mkdir(parents=True, exist_ok=True) if not cfg.jwt_secret: cfg.jwt_secret = SecretStr( get_or_create_jwt_secret( get_file_store(cfg.file_store, cfg.file_store_path) ) ) # If CLIRuntime is selected, disable Jupyter for all agents # Assuming 'cli' is the identifier for CLIRuntime if cfg.runtime and cfg.runtime.lower() == 'cli': for age_nt_name, agent_config in cfg.agents.items(): if agent_config.enable_jupyter: agent_config.enable_jupyter = False if agent_config.enable_browsing: agent_config.enable_browsing = False logger.openhands_logger.debug( 'Automatically disabled Jupyter plugin and browsing for all agents ' 'because CLIRuntime is selected and does not support IPython execution.' ) def get_agent_config_arg( agent_config_arg: str, toml_file: str = 'config.toml' ) -> AgentConfig | None: """Get a group of agent settings from the config file. A group in config.toml can look like this: ``` [agent.default] enable_prompt_extensions = false ``` The user-defined group name, like "default", is the argument to this function. The function will load the AgentConfig object with the settings of this group, from the config file, and set it as the AgentConfig object for the app. Note that the group must be under "agent" group, or in other words, the group name must start with "agent.". Args: agent_config_arg: The group of agent settings to get from the config.toml file. toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: AgentConfig: The AgentConfig object with the settings from the config file. """ # keep only the name, just in case agent_config_arg = agent_config_arg.strip('[]') # truncate the prefix, just in case if agent_config_arg.startswith('agent.'): agent_config_arg = agent_config_arg[6:] logger.openhands_logger.debug(f'Loading agent config from {agent_config_arg}') # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {e}') return None except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse agent group from {agent_config_arg}. Exception: {e}' ) return None # update the agent config with the specified section if 'agent' in toml_config and agent_config_arg in toml_config['agent']: return AgentConfig(**toml_config['agent'][agent_config_arg]) logger.openhands_logger.debug(f'Loading from toml failed for {agent_config_arg}') return None def get_llm_config_arg( llm_config_arg: str, toml_file: str = 'config.toml' ) -> LLMConfig | None: """Get a group of llm settings from the config file. A group in config.toml can look like this: ``` [llm.gpt-3.5-for-eval] model = 'gpt-3.5-turbo' api_key = '...' temperature = 0.5 num_retries = 8 ... ``` The user-defined group name, like "gpt-3.5-for-eval", is the argument to this function. The function will load the LLMConfig object with the settings of this group, from the config file, and set it as the LLMConfig object for the app. Note that the group must be under "llm" group, or in other words, the group name must start with "llm.". Args: llm_config_arg: The group of llm settings to get from the config.toml file. toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: LLMConfig: The LLMConfig object with the settings from the config file. """ # keep only the name, just in case llm_config_arg = llm_config_arg.strip('[]') # truncate the prefix, just in case if llm_config_arg.startswith('llm.'): llm_config_arg = llm_config_arg[4:] logger.openhands_logger.debug( f'Loading llm config "{llm_config_arg}" from {toml_file}' ) # Check if the file exists if not os.path.exists(toml_file): logger.openhands_logger.debug(f'Config file not found: {toml_file}') return None # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {e}') return None except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse llm group from {llm_config_arg}. Exception: {e}' ) return None # update the llm config with the specified section if 'llm' in toml_config and llm_config_arg in toml_config['llm']: return LLMConfig(**toml_config['llm'][llm_config_arg]) logger.openhands_logger.debug( f'LLM config "{llm_config_arg}" not found in {toml_file}' ) return None def get_llms_for_routing_config(toml_file: str = 'config.toml') -> dict[str, LLMConfig]: """Get the LLMs that are configured for routing from the config file. This function will return a dictionary of LLMConfig objects that are configured for routing, i.e., those with `for_routing` set to True. Args: toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: dict[str, LLMConfig]: A dictionary of LLMConfig objects for routing. """ llms_for_routing: dict[str, LLMConfig] = {} try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError: return llms_for_routing except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse LLM configs from {toml_file}. Exception: {e}' ) return llms_for_routing llm_configs = LLMConfig.from_toml_section(toml_config.get('llm', {})) if llm_configs: for llm_name, llm_config in llm_configs.items(): if llm_config.for_routing: llms_for_routing[llm_name] = llm_config return llms_for_routing def get_condenser_config_arg( condenser_config_arg: str, toml_file: str = 'config.toml' ) -> CondenserConfig | None: """Get a group of condenser settings from the config file by name. A group in config.toml can look like this: ``` [condenser.my_summarizer] type = 'llm' llm_config = 'gpt-4o' # References [llm.gpt-4o] max_size = 50 ... ``` The user-defined group name, like "my_summarizer", is the argument to this function. The function will load the CondenserConfig object with the settings of this group, from the config file. Note that the group must be under the "condenser" group, or in other words, the group name must start with "condenser.". Args: condenser_config_arg: The group of condenser settings to get from the config.toml file. toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: CondenserConfig: The CondenserConfig object with the settings from the config file, or None if not found/error. """ # keep only the name, just in case condenser_config_arg = condenser_config_arg.strip('[]') # truncate the prefix, just in case if condenser_config_arg.startswith('condenser.'): condenser_config_arg = condenser_config_arg[10:] logger.openhands_logger.debug( f'Loading condenser config [{condenser_config_arg}] from {toml_file}' ) # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {toml_file}. Error: {e}') return None except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse condenser group [{condenser_config_arg}] from {toml_file}. Exception: {e}' ) return None # Check if the condenser section and the specific config exist if ( 'condenser' not in toml_config or condenser_config_arg not in toml_config['condenser'] ): logger.openhands_logger.error( f'Condenser config section [condenser.{condenser_config_arg}] not found in {toml_file}' ) return None condenser_data = toml_config['condenser'][ condenser_config_arg ].copy() # Use copy to modify # Determine the type and handle potential LLM dependency condenser_type = condenser_data.get('type') if not condenser_type: logger.openhands_logger.error( f'Missing "type" field in [condenser.{condenser_config_arg}] section of {toml_file}' ) return None # Handle LLM config reference if needed, using get_llm_config_arg if ( condenser_type in ('llm', 'llm_attention', 'structured') and 'llm_config' in condenser_data and isinstance(condenser_data['llm_config'], str) ): llm_config_name = condenser_data['llm_config'] logger.openhands_logger.debug( f'Condenser [{condenser_config_arg}] requires LLM config [{llm_config_name}]. Loading it...' ) # Use the existing function to load the specific LLM config referenced_llm_config = get_llm_config_arg(llm_config_name, toml_file=toml_file) if referenced_llm_config: # Replace the string reference with the actual LLMConfig object condenser_data['llm_config'] = referenced_llm_config else: # get_llm_config_arg already logs the error if not found logger.openhands_logger.error( f"Failed to load required LLM config '{llm_config_name}' for condenser '{condenser_config_arg}'." ) return None # Create the condenser config instance try: config = create_condenser_config(condenser_type, condenser_data) logger.openhands_logger.info( f'Successfully loaded condenser config [{condenser_config_arg}] from {toml_file}' ) return config except (ValidationError, ValueError) as e: logger.openhands_logger.error( f'Invalid condenser configuration for [{condenser_config_arg}]: {e}.' ) return None def get_model_routing_config_arg(toml_file: str = 'config.toml') -> ModelRoutingConfig: """Get the model routing settings from the config file. We only support the default model routing config [model_routing]. Args: toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: ModelRoutingConfig: The ModelRoutingConfig object with the settings from the config file, or the object with default values if not found/error. """ logger.openhands_logger.debug( f"Loading model routing config ['model_routing'] from {toml_file}" ) default_cfg = ModelRoutingConfig() # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {toml_file}. Error: {e}') return default_cfg except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse model routing group [model_routing] from {toml_file}. Exception: {e}' ) return default_cfg # Update the model routing config with the specified section if 'model_routing' in toml_config: try: model_routing_data = toml_config['model_routing'] return ModelRoutingConfig(**model_routing_data) except ValidationError as e: logger.openhands_logger.error( f'Invalid model routing configuration for [model_routing]: {e}' ) return default_cfg logger.openhands_logger.warning( f'Model routing config section [model_routing] not found in {toml_file}' ) return default_cfg def parse_arguments() -> argparse.Namespace: """Parse command line arguments.""" parser = get_headless_parser() args = parser.parse_args() from openhands import get_version if args.version: print(f'OpenHands version: {get_version()}') sys.exit(0) return args def register_custom_agents(config: OpenHandsConfig) -> None: """Register custom agents from configuration. This function is called after configuration is loaded to ensure all custom agents specified in the config are properly imported and registered. """ # Import here to avoid circular dependency from openhands.controller.agent import Agent for agent_name, agent_config in config.agents.items(): if agent_config.classpath: try: agent_cls = get_impl(Agent, agent_config.classpath) Agent.register(agent_name, agent_cls) logger.openhands_logger.info( f"Registered custom agent '{agent_name}' from {agent_config.classpath}" ) except Exception as e: logger.openhands_logger.error( f"Failed to register agent '{agent_name}': {e}" ) def load_openhands_config( set_logging_levels: bool = True, config_file: str = 'config.toml' ) -> OpenHandsConfig: """Load the configuration from the specified config file and environment variables. Args: set_logging_levels: Whether to set the global variables for logging levels. config_file: Path to the config file. Defaults to 'config.toml' in the current directory. """ config = OpenHandsConfig() load_from_toml(config, config_file) load_from_env(config, os.environ) finalize_config(config) register_custom_agents(config) if set_logging_levels: logger.DEBUG = config.debug logger.DISABLE_COLOR_PRINTING = config.disable_color return config def setup_config_from_args(args: argparse.Namespace) -> OpenHandsConfig: """Load config from toml and override with command line arguments. Common setup used by both CLI and main.py entry points. Configuration precedence (from highest to lowest): 1. CLI parameters (e.g., -l for LLM config) 2. config.toml in current directory (or --config-file location if specified) 3. ~/.openhands/settings.json and ~/.openhands/config.toml """ # Load base config from toml and env vars config = load_openhands_config(config_file=args.config_file) # Override with command line arguments if provided if args.llm_config: logger.openhands_logger.debug(f'CLI specified LLM config: {args.llm_config}') # Check if the LLM config is NOT in the loaded configs if args.llm_config not in config.llms: # Try to load from the specified config file llm_config = get_llm_config_arg(args.llm_config, args.config_file) # If not found in the specified config file, try the user's config.toml if llm_config is None and args.config_file != os.path.join( os.path.expanduser('~'), '.openhands', 'config.toml' ): user_config = os.path.join( os.path.expanduser('~'), '.openhands', 'config.toml' ) if os.path.exists(user_config): logger.openhands_logger.debug( f"Trying to load LLM config '{args.llm_config}' from user config: {user_config}" ) llm_config = get_llm_config_arg(args.llm_config, user_config) else: # If it's already in the loaded configs, use that llm_config = config.llms[args.llm_config] logger.openhands_logger.debug( f"Using LLM config '{args.llm_config}' from loaded configuration" ) if llm_config is None: raise ValueError( f"Cannot find LLM configuration '{args.llm_config}' in any config file" ) # Set this as the default LLM config (highest precedence) config.set_llm_config(llm_config) logger.openhands_logger.debug( f'Set LLM config from CLI parameter: {args.llm_config}' ) # Override default agent if provided if hasattr(args, 'agent_cls') and args.agent_cls: config.default_agent = args.agent_cls # Set max iterations and max budget per task if provided, otherwise fall back to config values if hasattr(args, 'max_iterations') and args.max_iterations is not None: config.max_iterations = args.max_iterations if hasattr(args, 'max_budget_per_task') and args.max_budget_per_task is not None: config.max_budget_per_task = args.max_budget_per_task # Read selected repository in config for use by CLI and main.py if hasattr(args, 'selected_repo') and args.selected_repo is not None: config.sandbox.selected_repo = args.selected_repo return config