import os
from itertools import islice
from agenthub.codeact_agent.action_parser import CodeActResponseParser
from openhands.controller.agent import Agent
from openhands.controller.state.state import State
from openhands.core.config import AgentConfig
from openhands.core.message import ImageContent, Message, TextContent
from openhands.events.action import (
Action,
AgentDelegateAction,
AgentFinishAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
)
from openhands.events.observation import (
AgentDelegateObservation,
CmdOutputObservation,
IPythonRunCellObservation,
UserRejectObservation,
)
from openhands.events.observation.error import ErrorObservation
from openhands.events.observation.observation import Observation
from openhands.events.serialization.event import truncate_content
from openhands.llm.llm import LLM
from openhands.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
from openhands.utils.microagent import MicroAgent
from openhands.utils.prompt import PromptManager
class CodeActAgent(Agent):
VERSION = '1.9'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.

"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions,
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
action_parser = CodeActResponseParser()
def __init__(
self,
llm: LLM,
config: AgentConfig,
) -> None:
"""Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm, config)
self.reset()
self.micro_agent = (
MicroAgent(
os.path.join(
os.path.dirname(__file__), 'micro', f'{config.micro_agent_name}.md'
)
)
if config.micro_agent_name
else None
)
self.prompt_manager = PromptManager(
prompt_dir=os.path.join(os.path.dirname(__file__)),
agent_skills_docs=AgentSkillsRequirement.documentation,
micro_agent=self.micro_agent,
)
def action_to_str(self, action: Action) -> str:
if isinstance(action, CmdRunAction):
return (
f'{action.thought}\n\n{action.command}\n'
)
elif isinstance(action, IPythonRunCellAction):
return f'{action.thought}\n\n{action.code}\n'
elif isinstance(action, AgentDelegateAction):
return f'{action.thought}\n\n{action.inputs["task"]}\n'
elif isinstance(action, MessageAction):
return action.content
elif isinstance(action, AgentFinishAction) and action.source == 'agent':
return action.thought
return ''
def get_action_message(self, action: Action) -> Message | None:
if (
isinstance(action, AgentDelegateAction)
or isinstance(action, CmdRunAction)
or isinstance(action, IPythonRunCellAction)
or isinstance(action, MessageAction)
or (isinstance(action, AgentFinishAction) and action.source == 'agent')
):
content = [TextContent(text=self.action_to_str(action))]
if (
self.llm.vision_is_active()
and isinstance(action, MessageAction)
and action.images_urls
):
content.append(ImageContent(image_urls=action.images_urls))
return Message(
role='user' if action.source == 'user' else 'assistant', content=content
)
return None
def get_observation_message(self, obs: Observation) -> Message | None:
max_message_chars = self.llm.config.max_message_chars
obs_prefix = 'OBSERVATION:\n'
if isinstance(obs, CmdOutputObservation):
text = obs_prefix + truncate_content(obs.content, max_message_chars)
text += (
f'\n[Command {obs.command_id} finished with exit code {obs.exit_code}]'
)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, IPythonRunCellObservation):
text = obs_prefix + obs.content
# replace base64 images with a placeholder
splitted = text.split('\n')
for i, line in enumerate(splitted):
if ' already displayed to user'
)
text = '\n'.join(splitted)
text = truncate_content(text, max_message_chars)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentDelegateObservation):
text = obs_prefix + truncate_content(
obs.outputs['content'] if 'content' in obs.outputs else '',
max_message_chars,
)
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, ErrorObservation):
text = obs_prefix + truncate_content(obs.content, max_message_chars)
text += '\n[Error occurred in processing last action]'
return Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, UserRejectObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += '\n[Last action has been rejected by the user]'
return Message(role='user', content=[TextContent(text=text)])
else:
# If an observation message is not returned, it will cause an error
# when the LLM tries to return the next message
raise ValueError(f'Unknown observation type: {type(obs)}')
def reset(self) -> None:
"""Resets the CodeAct Agent."""
super().reset()
def step(self, state: State) -> Action:
"""Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
# if we're done, go back
latest_user_message = state.history.get_last_user_message()
if latest_user_message and latest_user_message.strip() == '/exit':
return AgentFinishAction()
# prepare what we want to send to the LLM
messages = self._get_messages(state)
params = {
'messages': self.llm.format_messages_for_llm(messages),
'stop': [
'',
'',
'',
],
}
response = self.llm.completion(**params)
return self.action_parser.parse(response)
def _get_messages(self, state: State) -> list[Message]:
messages: list[Message] = [
Message(
role='system',
content=[
TextContent(
text=self.prompt_manager.system_message,
cache_prompt=self.llm.is_caching_prompt_active(), # Cache system prompt
)
],
),
Message(
role='user',
content=[
TextContent(
text=self.prompt_manager.initial_user_message,
cache_prompt=self.llm.is_caching_prompt_active(), # if the user asks the same query,
)
],
),
]
for event in state.history.get_events():
# create a regular message from an event
if isinstance(event, Action):
message = self.get_action_message(event)
elif isinstance(event, Observation):
message = self.get_observation_message(event)
else:
raise ValueError(f'Unknown event type: {type(event)}')
# add regular message
if message:
# handle error if the message is the SAME role as the previous message
# litellm.exceptions.BadRequestError: litellm.BadRequestError: OpenAIException - Error code: 400 - {'detail': 'Only supports u/a/u/a/u...'}
# there shouldn't be two consecutive messages from the same role
if messages and messages[-1].role == message.role:
messages[-1].content.extend(message.content)
else:
messages.append(message)
# Add caching to the last 2 user messages
if self.llm.is_caching_prompt_active():
user_turns_processed = 0
for message in reversed(messages):
if message.role == 'user' and user_turns_processed < 2:
message.content[
-1
].cache_prompt = True # Last item inside the message content
user_turns_processed += 1
# The latest user message is important:
# we want to remind the agent of the environment constraints
latest_user_message = next(
islice(
(
m
for m in reversed(messages)
if m.role == 'user'
and any(isinstance(c, TextContent) for c in m.content)
),
1,
),
None,
)
if latest_user_message:
reminder_text = f'\n\nENVIRONMENT REMINDER: You have {state.max_iterations - state.iteration} turns left to complete the task. When finished reply with .'
latest_user_message.content.append(TextContent(text=reminder_text))
return messages