import copy import os import sys from collections import deque from typing import TYPE_CHECKING if TYPE_CHECKING: from litellm import ChatCompletionToolParam from openhands.events.action import Action from openhands.llm.llm import ModelResponse from openhands.llm.llm_utils import check_tools import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling from openhands.agenthub.codeact_agent.tools.bash import create_cmd_run_tool from openhands.agenthub.codeact_agent.tools.browser import BrowserTool from openhands.agenthub.codeact_agent.tools.finish import FinishTool from openhands.agenthub.codeact_agent.tools.ipython import IPythonTool from openhands.agenthub.codeact_agent.tools.llm_based_edit import LLMBasedFileEditTool from openhands.agenthub.codeact_agent.tools.str_replace_editor import ( create_str_replace_editor_tool, ) from openhands.agenthub.codeact_agent.tools.think import ThinkTool from openhands.controller.agent import Agent from openhands.controller.state.state import State from openhands.core.config import AgentConfig from openhands.core.logger import openhands_logger as logger from openhands.core.message import Message from openhands.events.action import AgentFinishAction, MessageAction from openhands.events.event import Event from openhands.llm.llm import LLM from openhands.memory.condenser import Condenser from openhands.memory.condenser.condenser import Condensation, View from openhands.memory.conversation_memory import ConversationMemory from openhands.runtime.plugins import ( AgentSkillsRequirement, JupyterRequirement, PluginRequirement, ) from openhands.utils.prompt import PromptManager class CodeActAgent(Agent): VERSION = '2.2' """ The Code Act Agent is a minimalist agent. The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step. ### Overview This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details). The conceptual idea is illustrated below. At each turn, the agent can: 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc. 2. **CodeAct**: Choose to perform the task by executing code - Execute any valid Linux `bash` command - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details. ![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3) """ sandbox_plugins: list[PluginRequirement] = [ # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since # AgentSkillsRequirement provides a lot of Python functions, # and it needs to be initialized before Jupyter for Jupyter to use those functions. AgentSkillsRequirement(), JupyterRequirement(), ] def __init__( self, llm: LLM, config: AgentConfig, ) -> None: """Initializes a new instance of the CodeActAgent class. Parameters: - llm (LLM): The llm to be used by this agent - config (AgentConfig): The configuration for this agent """ super().__init__(llm, config) self.pending_actions: deque['Action'] = deque() self.reset() self.tools = self._get_tools() # Create a ConversationMemory instance self.conversation_memory = ConversationMemory(self.config, self.prompt_manager) self.condenser = Condenser.from_config(self.config.condenser) logger.debug(f'Using condenser: {type(self.condenser)}') @property def prompt_manager(self) -> PromptManager: if self._prompt_manager is None: self._prompt_manager = PromptManager( prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'), ) return self._prompt_manager def _get_tools(self) -> list['ChatCompletionToolParam']: # For these models, we use short tool descriptions ( < 1024 tokens) # to avoid hitting the OpenAI token limit for tool descriptions. SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS = ['gpt-', 'o3', 'o1', 'o4'] use_short_tool_desc = False if self.llm is not None: use_short_tool_desc = any( model_substr in self.llm.config.model for model_substr in SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS ) tools = [] if self.config.enable_cmd: tools.append(create_cmd_run_tool(use_short_description=use_short_tool_desc)) if self.config.enable_think: tools.append(ThinkTool) if self.config.enable_finish: tools.append(FinishTool) if self.config.enable_browsing: if sys.platform == 'win32': logger.warning('Windows runtime does not support browsing yet') else: tools.append(BrowserTool) if self.config.enable_jupyter: tools.append(IPythonTool) if self.config.enable_llm_editor: tools.append(LLMBasedFileEditTool) elif self.config.enable_editor: tools.append( create_str_replace_editor_tool( use_short_description=use_short_tool_desc ) ) return tools def reset(self) -> None: """Resets the CodeAct Agent.""" super().reset() self.pending_actions.clear() def step(self, state: State) -> 'Action': """Performs one step using the CodeAct Agent. This includes gathering info on previous steps and prompting the model to make a command to execute. Parameters: - state (State): used to get updated info Returns: - CmdRunAction(command) - bash command to run - IPythonRunCellAction(code) - IPython code to run - AgentDelegateAction(agent, inputs) - delegate action for (sub)task - MessageAction(content) - Message action to run (e.g. ask for clarification) - AgentFinishAction() - end the interaction """ # Continue with pending actions if any if self.pending_actions: return self.pending_actions.popleft() # if we're done, go back latest_user_message = state.get_last_user_message() if latest_user_message and latest_user_message.content.strip() == '/exit': return AgentFinishAction() # Condense the events from the state. If we get a view we'll pass those # to the conversation manager for processing, but if we get a condensation # event we'll just return that instead of an action. The controller will # immediately ask the agent to step again with the new view. condensed_history: list[Event] = [] match self.condenser.condensed_history(state): case View(events=events): condensed_history = events case Condensation(action=condensation_action): return condensation_action logger.debug( f'Processing {len(condensed_history)} events from a total of {len(state.history)} events' ) initial_user_message = self._get_initial_user_message(state.history) messages = self._get_messages(condensed_history, initial_user_message) params: dict = { 'messages': self.llm.format_messages_for_llm(messages), } params['tools'] = check_tools(self.tools, self.llm.config) params['extra_body'] = {'metadata': state.to_llm_metadata(agent_name=self.name)} response = self.llm.completion(**params) logger.debug(f'Response from LLM: {response}') actions = self.response_to_actions(response) logger.debug(f'Actions after response_to_actions: {actions}') for action in actions: self.pending_actions.append(action) return self.pending_actions.popleft() def _get_initial_user_message(self, history: list[Event]) -> MessageAction: """Finds the initial user message action from the full history.""" initial_user_message: MessageAction | None = None for event in history: if isinstance(event, MessageAction) and event.source == 'user': initial_user_message = event break if initial_user_message is None: # This should not happen in a valid conversation logger.error( f'CRITICAL: Could not find the initial user MessageAction in the full {len(history)} events history.' ) # Depending on desired robustness, could raise error or create a dummy action # and log the error raise ValueError( 'Initial user message not found in history. Please report this issue.' ) return initial_user_message def _get_messages( self, events: list[Event], initial_user_message: MessageAction ) -> list[Message]: """Constructs the message history for the LLM conversation. This method builds a structured conversation history by processing events from the state and formatting them into messages that the LLM can understand. It handles both regular message flow and function-calling scenarios. The method performs the following steps: 1. Checks for SystemMessageAction in events, adds one if missing (legacy support) 2. Processes events (Actions and Observations) into messages, including SystemMessageAction 3. Handles tool calls and their responses in function-calling mode 4. Manages message role alternation (user/assistant/tool) 5. Applies caching for specific LLM providers (e.g., Anthropic) 6. Adds environment reminders for non-function-calling mode Args: events: The list of events to convert to messages Returns: list[Message]: A list of formatted messages ready for LLM consumption, including: - System message with prompt (from SystemMessageAction) - Action messages (from both user and assistant) - Observation messages (including tool responses) - Environment reminders (in non-function-calling mode) Note: - In function-calling mode, tool calls and their responses are carefully tracked to maintain proper conversation flow - Messages from the same role are combined to prevent consecutive same-role messages - For Anthropic models, specific messages are cached according to their documentation """ if not self.prompt_manager: raise Exception('Prompt Manager not instantiated.') # Use ConversationMemory to process events (including SystemMessageAction) messages = self.conversation_memory.process_events( condensed_history=events, initial_user_action=initial_user_message, max_message_chars=self.llm.config.max_message_chars, vision_is_active=self.llm.vision_is_active(), ) if self.llm.is_caching_prompt_active(): self.conversation_memory.apply_prompt_caching(messages) return messages def response_to_actions(self, response: 'ModelResponse') -> list['Action']: return codeact_function_calling.response_to_actions( response, mcp_tool_names=list(self.mcp_tools.keys()) )