import json import logging import multiprocessing as mp import os import pathlib import subprocess import time import traceback from typing import Any, Awaitable, Callable, TextIO import pandas as pd from pydantic import BaseModel from tqdm import tqdm from openhands.controller.state.state import State from openhands.core.config import LLMConfig from openhands.core.logger import get_console_handler from openhands.core.logger import openhands_logger as logger from openhands.events.action import Action from openhands.events.action.message import MessageAction class EvalMetadata(BaseModel): agent_class: str llm_config: LLMConfig max_iterations: int eval_output_dir: str start_time: str git_commit: str dataset: str | None = None data_split: str | None = None details: dict[str, Any] | None = None def model_dump(self, *args, **kwargs): dumped_dict = super().model_dump(*args, **kwargs) # avoid leaking sensitive information dumped_dict['llm_config'] = self.llm_config.to_safe_dict() return dumped_dict def model_dump_json(self, *args, **kwargs): dumped = super().model_dump_json(*args, **kwargs) dumped_dict = json.loads(dumped) # avoid leaking sensitive information dumped_dict['llm_config'] = self.llm_config.to_safe_dict() logger.debug(f'Dumped metadata: {dumped_dict}') return json.dumps(dumped_dict) class EvalOutput(BaseModel): # NOTE: User-specified instance_id: str # output of the evaluation # store anything that is needed for the score calculation test_result: dict[str, Any] instruction: str | None = None # Interaction info metadata: EvalMetadata | None = None # list[tuple[dict[str, Any], dict[str, Any]]] - for compatibility with the old format history: ( list[dict[str, Any]] | list[tuple[dict[str, Any], dict[str, Any]]] | None ) = None metrics: dict[str, Any] | None = None error: str | None = None # Optionally save the input test instance instance: dict[str, Any] | None = None def model_dump(self, *args, **kwargs): dumped_dict = super().model_dump(*args, **kwargs) # Remove None values dumped_dict = {k: v for k, v in dumped_dict.items() if v is not None} # Apply custom serialization for metadata (to avoid leaking sensitive information) if self.metadata is not None: dumped_dict['metadata'] = self.metadata.model_dump() return dumped_dict def model_dump_json(self, *args, **kwargs): dumped = super().model_dump_json(*args, **kwargs) dumped_dict = json.loads(dumped) # Apply custom serialization for metadata (to avoid leaking sensitive information) if 'metadata' in dumped_dict: dumped_dict['metadata'] = json.loads(self.metadata.model_dump_json()) return json.dumps(dumped_dict) class EvalException(Exception): pass def codeact_user_response( state: State, encapsulate_solution: bool = False, try_parse: Callable[[Action], str] | None = None, ) -> str: encaps_str = ( ( 'Please encapsulate your final answer (answer ONLY) within and .\n' 'For example: The answer to the question is 42 .\n' ) if encapsulate_solution else '' ) msg = ( 'Please continue working on the task on whatever approach you think is suitable.\n' 'If you think you have solved the task, please first send your answer to user through message and then finish the interaction.\n' f'{encaps_str}' 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n' ) if state.history: # check if the last action has an answer, if so, early exit if try_parse is not None: last_action = state.history.get_last_action() ans = try_parse(last_action) if ans is not None: return '/exit' # check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up user_msgs = [ event for event in state.history.get_events() if isinstance(event, MessageAction) and event.source == 'user' ] if len(user_msgs) >= 2: # let the agent know that it can give up when it has tried 3 times return ( msg + 'If you want to give up, run: exit .\n' ) return msg def cleanup(): print('Cleaning up child processes...') for process in mp.active_children(): print(f'Terminating child process: {process.name}') process.terminate() process.join() def make_metadata( llm_config: LLMConfig, dataset_name: str, agent_class: str, max_iterations: int, eval_note: str | None, eval_output_dir: str, data_split: str | None = None, details: dict[str, Any] | None = None, ) -> EvalMetadata: model_name = llm_config.model.split('/')[-1] model_path = model_name.replace(':', '_').replace('@', '-') eval_note = f'_N_{eval_note}' if eval_note else '' eval_output_path = os.path.join( eval_output_dir, dataset_name, agent_class, f'{model_path}_maxiter_{max_iterations}{eval_note}', ) pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True) pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir( parents=True, exist_ok=True ) logger.info(f'Using evaluation output directory: {eval_output_path}') metadata = EvalMetadata( agent_class=agent_class, llm_config=llm_config, max_iterations=max_iterations, eval_output_dir=eval_output_path, start_time=time.strftime('%Y-%m-%d %H:%M:%S'), git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD']) .decode('utf-8') .strip(), dataset=dataset_name, data_split=data_split, details=details, ) metadata_json = metadata.model_dump_json() logger.info(f'Metadata: {metadata_json}') with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f: f.write(metadata_json) return metadata def prepare_dataset( dataset: pd.DataFrame, output_file: str, eval_n_limit: int, eval_ids: list[str] | None = None, skip_num: int | None = None, ): assert ( 'instance_id' in dataset.columns ), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column." id_column = 'instance_id' logger.info(f'Writing evaluation output to {output_file}') finished_ids: set[str] = set() if os.path.exists(output_file): with open(output_file, 'r') as f: for line in f: data = json.loads(line) finished_ids.add(str(data[id_column])) logger.warning( f'\nOutput file {output_file} already exists. Loaded {len(finished_ids)} finished instances.' ) if eval_ids: eval_ids_converted = [dataset[id_column].dtype.type(id) for id in eval_ids] dataset = dataset[dataset[id_column].isin(eval_ids_converted)] logger.info(f'Limiting evaluation to {len(eval_ids)} specific instances.') elif skip_num and skip_num >= 0: skip_num = min(skip_num, len(dataset)) dataset = dataset.iloc[skip_num:] logger.info( f'Starting evaluation with skipping first {skip_num} instances ({len(dataset)} instances to run).' ) if eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to {eval_n_limit} instances.') elif eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to first {eval_n_limit} instances.') new_dataset = [ instance for _, instance in dataset.iterrows() if str(instance[id_column]) not in finished_ids ] logger.info( f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}' ) return pd.DataFrame(new_dataset) def update_progress( result: EvalOutput, pbar: tqdm, output_fp: TextIO, ): """Update the progress bar and write the result to the output file.""" pbar.update(1) pbar.set_description(f'Instance {result.instance_id}') pbar.set_postfix_str(f'Test Result: {str(result.test_result)[:300]}...') logger.info( f'Finished evaluation for instance {result.instance_id}: {str(result.test_result)[:300]}...\n' ) output_fp.write(json.dumps(result.model_dump()) + '\n') output_fp.flush() def assert_and_raise(condition: bool, msg: str): """Raise an EvalException if the condition is not met. This will be used in conjunction with _process_instance_wrapper to handle retries. An EvalException should trigger a retry. """ if not condition: raise EvalException(msg) def _process_instance_wrapper( process_instance_func: Callable[[pd.Series, EvalMetadata, bool], EvalOutput], instance: pd.Series, metadata: EvalMetadata, use_mp: bool, max_retries: int = 5, ) -> EvalOutput: """Wrap the process_instance_func to handle retries and errors. Retry an instance up to max_retries times if it fails (e.g., due to transient network/runtime issues). """ for attempt in range(max_retries + 1): try: result = process_instance_func(instance, metadata, use_mp) return result except Exception as e: error = str(e) stacktrace = traceback.format_exc() if attempt == max_retries: logger.exception(e) msg = ( '-' * 10 + '\n' + f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}' + '\n' + f'[Encountered after {max_retries} retries. Please check the logs and report the issue.]' + '-' * 10 ) # Raise an error after all retries & stop the evaluation logger.exception(e) raise RuntimeError( f'Maximum error retries reached for instance {instance.instance_id}' ) from e msg = ( '-' * 10 + '\n' + f'Error in instance [{instance.instance_id}]: {error}. Stacktrace:\n{stacktrace}' + '\n' + '-' * 10 + f'[The above error occurred. Retrying... (attempt {attempt + 1} of {max_retries})]' + '-' * 10 + '\n' ) logger.error(msg) if use_mp: print(msg) # use print to directly print to console time.sleep(5) def _process_instance_wrapper_mp(args): """Wrapper for multiprocessing, especially for imap_unordered.""" return _process_instance_wrapper(*args) def run_evaluation( dataset: pd.DataFrame, metadata: EvalMetadata | None, output_file: str, num_workers: int, process_instance_func: Callable[ [pd.Series, EvalMetadata, bool], Awaitable[EvalOutput] ], max_retries: int = 5, # number of retries for each instance ): use_multiprocessing = num_workers > 1 if metadata is not None: logger.info( f'Evaluation started with Agent {metadata.agent_class}:\n' f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.\n' ) else: logger.info(f'Evaluation started with {num_workers} workers.') total_instances = len(dataset) pbar = tqdm(total=total_instances, desc='Instances processed') output_fp = open(output_file, 'a') try: if use_multiprocessing: with mp.Pool(num_workers) as pool: args_iter = ( (process_instance_func, instance, metadata, True, max_retries) for _, instance in dataset.iterrows() ) results = pool.imap_unordered(_process_instance_wrapper_mp, args_iter) for result in results: update_progress(result, pbar, output_fp) else: for _, instance in dataset.iterrows(): result = _process_instance_wrapper( process_instance_func=process_instance_func, instance=instance, metadata=metadata, use_mp=False, max_retries=max_retries, ) update_progress(result, pbar, output_fp) except KeyboardInterrupt: print('\nKeyboardInterrupt received. Cleaning up...\n') cleanup() output_fp.close() logger.info('\nEvaluation finished.\n') def reset_logger_for_multiprocessing( logger: logging.Logger, instance_id: str, log_dir: str ): """Reset the logger for multiprocessing. Save logs to a separate file for each process, instead of trying to write to the same file/console from multiple processes. """ # Set up logger log_file = os.path.join( log_dir, f'instance_{instance_id}.log', ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) # add console handler to print ONE line console_handler = get_console_handler(log_level=logging.INFO) console_handler.setFormatter( logging.Formatter( f'Instance {instance_id} - ' + '%(asctime)s - %(levelname)s - %(message)s' ) ) logger.addHandler(console_handler) logger.info( f'Starting evaluation for instance {instance_id}.\n' f'Hint: run "tail -f {log_file}" to see live logs in a separate shell' ) # Only log WARNING or higher to console console_handler.setLevel(logging.WARNING) # Log INFO and above to file os.makedirs(os.path.dirname(log_file), exist_ok=True) file_handler = logging.FileHandler(log_file) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler)