import copy import os from collections import deque from litellm import ChatCompletionToolParam import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling from openhands.agenthub.codeact_agent.tools.bash import create_cmd_run_tool from openhands.agenthub.codeact_agent.tools.browser import BrowserTool from openhands.agenthub.codeact_agent.tools.finish import FinishTool from openhands.agenthub.codeact_agent.tools.ipython import IPythonTool from openhands.agenthub.codeact_agent.tools.llm_based_edit import LLMBasedFileEditTool from openhands.agenthub.codeact_agent.tools.str_replace_editor import ( create_str_replace_editor_tool, ) from openhands.agenthub.codeact_agent.tools.think import ThinkTool from openhands.agenthub.codeact_agent.tools.web_read import WebReadTool from openhands.controller.agent import Agent from openhands.controller.state.state import State from openhands.core.config import AgentConfig from openhands.core.logger import openhands_logger as logger from openhands.core.message import Message from openhands.events.action import ( Action, AgentFinishAction, ) from openhands.events.event import Event from openhands.llm.llm import LLM from openhands.memory.condenser import Condenser from openhands.memory.condenser.condenser import Condensation, View from openhands.memory.conversation_memory import ConversationMemory from openhands.runtime.plugins import ( AgentSkillsRequirement, JupyterRequirement, PluginRequirement, ) from openhands.utils.prompt import PromptManager class CodeActAgent(Agent): VERSION = '2.2' """ The Code Act Agent is a minimalist agent. The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step. ### Overview This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details). The conceptual idea is illustrated below. At each turn, the agent can: 1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc. 2. **CodeAct**: Choose to perform the task by executing code - Execute any valid Linux `bash` command - Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details. ![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3) """ sandbox_plugins: list[PluginRequirement] = [ # NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since # AgentSkillsRequirement provides a lot of Python functions, # and it needs to be initialized before Jupyter for Jupyter to use those functions. AgentSkillsRequirement(), JupyterRequirement(), ] def __init__( self, llm: LLM, config: AgentConfig, ) -> None: """Initializes a new instance of the CodeActAgent class. Parameters: - llm (LLM): The llm to be used by this agent - config (AgentConfig): The configuration for this agent """ super().__init__(llm, config) self.pending_actions: deque[Action] = deque() self.reset() self.tools = self._get_tools() self.prompt_manager = PromptManager( prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'), ) # Create a ConversationMemory instance self.conversation_memory = ConversationMemory(self.config, self.prompt_manager) self.condenser = Condenser.from_config(self.config.condenser) logger.debug(f'Using condenser: {type(self.condenser)}') self.response_to_actions_fn = codeact_function_calling.response_to_actions def _get_tools(self) -> list[ChatCompletionToolParam]: SIMPLIFIED_TOOL_DESCRIPTION_LLM_SUBSTRS = ['gpt-', 'o3', 'o1'] use_simplified_tool_desc = False if self.llm is not None: use_simplified_tool_desc = any( model_substr in self.llm.config.model for model_substr in SIMPLIFIED_TOOL_DESCRIPTION_LLM_SUBSTRS ) tools = [] if self.config.enable_cmd: tools.append( create_cmd_run_tool(use_simplified_description=use_simplified_tool_desc) ) if self.config.enable_think: tools.append(ThinkTool) if self.config.enable_finish: tools.append(FinishTool) if self.config.enable_browsing: tools.append(WebReadTool) tools.append(BrowserTool) if self.config.enable_jupyter: tools.append(IPythonTool) if self.config.enable_llm_editor: tools.append(LLMBasedFileEditTool) elif self.config.enable_editor: tools.append( create_str_replace_editor_tool( use_simplified_description=use_simplified_tool_desc ) ) return tools def reset(self) -> None: """Resets the CodeAct Agent.""" super().reset() self.pending_actions.clear() def step(self, state: State) -> Action: """Performs one step using the CodeAct Agent. This includes gathering info on previous steps and prompting the model to make a command to execute. Parameters: - state (State): used to get updated info Returns: - CmdRunAction(command) - bash command to run - IPythonRunCellAction(code) - IPython code to run - AgentDelegateAction(agent, inputs) - delegate action for (sub)task - MessageAction(content) - Message action to run (e.g. ask for clarification) - AgentFinishAction() - end the interaction """ # Continue with pending actions if any if self.pending_actions: return self.pending_actions.popleft() # if we're done, go back latest_user_message = state.get_last_user_message() if latest_user_message and latest_user_message.content.strip() == '/exit': return AgentFinishAction() # Condense the events from the state. If we get a view we'll pass those # to the conversation manager for processing, but if we get a condensation # event we'll just return that instead of an action. The controller will # immediately ask the agent to step again with the new view. condensed_history: list[Event] = [] match self.condenser.condensed_history(state): case View(events=events): condensed_history = events case Condensation(action=condensation_action): return condensation_action logger.debug( f'Processing {len(condensed_history)} events from a total of {len(state.history)} events' ) messages = self._get_messages(condensed_history) params: dict = { 'messages': self.llm.format_messages_for_llm(messages), } params['tools'] = self.tools if self.mcp_tools: # Only add tools with unique names existing_names = {tool['function']['name'] for tool in params['tools']} unique_mcp_tools = [ tool for tool in self.mcp_tools if tool['function']['name'] not in existing_names ] if self.llm.config.model == 'gemini-2.5-pro-preview-03-25': logger.info( f'Removing the default fields from the MCP tools for {self.llm.config.model} ' "since it doesn't support them and the request would crash." ) # prevent mutation of input tools unique_mcp_tools = copy.deepcopy(unique_mcp_tools) # Strip off default fields that cause errors with gemini-preview for tool in unique_mcp_tools: if 'function' in tool and 'parameters' in tool['function']: if 'properties' in tool['function']['parameters']: for prop_name, prop in tool['function']['parameters'][ 'properties' ].items(): if 'default' in prop: del prop['default'] params['tools'] += unique_mcp_tools # log to litellm proxy if possible params['extra_body'] = {'metadata': state.to_llm_metadata(agent_name=self.name)} response = self.llm.completion(**params) logger.debug(f'Response from LLM: {response}') actions = self.response_to_actions_fn(response) logger.debug(f'Actions after response_to_actions: {actions}') for action in actions: self.pending_actions.append(action) return self.pending_actions.popleft() def _get_messages(self, events: list[Event]) -> list[Message]: """Constructs the message history for the LLM conversation. This method builds a structured conversation history by processing events from the state and formatting them into messages that the LLM can understand. It handles both regular message flow and function-calling scenarios. The method performs the following steps: 1. Checks for SystemMessageAction in events, adds one if missing (legacy support) 2. Processes events (Actions and Observations) into messages, including SystemMessageAction 3. Handles tool calls and their responses in function-calling mode 4. Manages message role alternation (user/assistant/tool) 5. Applies caching for specific LLM providers (e.g., Anthropic) 6. Adds environment reminders for non-function-calling mode Args: events: The list of events to convert to messages Returns: list[Message]: A list of formatted messages ready for LLM consumption, including: - System message with prompt (from SystemMessageAction) - Action messages (from both user and assistant) - Observation messages (including tool responses) - Environment reminders (in non-function-calling mode) Note: - In function-calling mode, tool calls and their responses are carefully tracked to maintain proper conversation flow - Messages from the same role are combined to prevent consecutive same-role messages - For Anthropic models, specific messages are cached according to their documentation """ if not self.prompt_manager: raise Exception('Prompt Manager not instantiated.') # Use ConversationMemory to process events (including SystemMessageAction) messages = self.conversation_memory.process_events( condensed_history=events, max_message_chars=self.llm.config.max_message_chars, vision_is_active=self.llm.vision_is_active(), ) if self.llm.is_caching_prompt_active(): self.conversation_memory.apply_prompt_caching(messages) return messages