import argparse import os import pathlib import platform import sys from ast import literal_eval from types import UnionType from typing import Any, MutableMapping, get_args, get_origin from uuid import uuid4 import toml from dotenv import load_dotenv from pydantic import BaseModel, SecretStr, ValidationError from openhands import __version__ from openhands.core import logger from openhands.core.config.agent_config import AgentConfig from openhands.core.config.app_config import AppConfig from openhands.core.config.condenser_config import condenser_config_from_toml_section from openhands.core.config.config_utils import ( OH_DEFAULT_AGENT, OH_MAX_ITERATIONS, ) from openhands.core.config.extended_config import ExtendedConfig from openhands.core.config.llm_config import LLMConfig from openhands.core.config.sandbox_config import SandboxConfig from openhands.core.config.security_config import SecurityConfig from openhands.storage import get_file_store from openhands.storage.files import FileStore JWT_SECRET = '.jwt_secret' load_dotenv() def load_from_env( cfg: AppConfig, env_or_toml_dict: dict | MutableMapping[str, str] ) -> None: """Sets config attributes from environment variables or TOML dictionary. Reads environment-style variables and updates the config attributes accordingly. Supports configuration of LLM settings (e.g., LLM_BASE_URL), agent settings (e.g., AGENT_MEMORY_ENABLED), sandbox settings (e.g., SANDBOX_TIMEOUT), and more. Args: cfg: The AppConfig object to set attributes on. env_or_toml_dict: The environment variables or a config.toml dict. """ def get_optional_type(union_type: UnionType) -> Any: """Returns the non-None type from a Union.""" types = get_args(union_type) return next((t for t in types if t is not type(None)), None) # helper function to set attributes based on env vars def set_attr_from_env(sub_config: BaseModel, prefix='') -> None: """Set attributes of a config model based on environment variables.""" for field_name, field_info in sub_config.model_fields.items(): field_value = getattr(sub_config, field_name) field_type = field_info.annotation # compute the expected env var name from the prefix and field name # e.g. LLM_BASE_URL env_var_name = (prefix + field_name).upper() if isinstance(field_value, BaseModel): set_attr_from_env(field_value, prefix=field_name + '_') elif env_var_name in env_or_toml_dict: # convert the env var to the correct type and set it value = env_or_toml_dict[env_var_name] # skip empty config values (fall back to default) if not value: continue try: # if it's an optional type, get the non-None type if get_origin(field_type) is UnionType: field_type = get_optional_type(field_type) # Attempt to cast the env var to type hinted in the dataclass if field_type is bool: cast_value = str(value).lower() in ['true', '1'] # parse dicts like SANDBOX_RUNTIME_STARTUP_ENV_VARS elif get_origin(field_type) is dict: cast_value = literal_eval(value) else: cast_value = field_type(value) setattr(sub_config, field_name, cast_value) except (ValueError, TypeError): logger.openhands_logger.error( f'Error setting env var {env_var_name}={value}: check that the value is of the right type' ) # Start processing from the root of the config object set_attr_from_env(cfg) # load default LLM config from env default_llm_config = cfg.get_llm_config() set_attr_from_env(default_llm_config, 'LLM_') # load default agent config from env default_agent_config = cfg.get_agent_config() set_attr_from_env(default_agent_config, 'AGENT_') def load_from_toml(cfg: AppConfig, toml_file: str = 'config.toml') -> None: """Load the config from the toml file. Supports both styles of config vars. Args: cfg: The AppConfig object to update attributes of. toml_file: The path to the toml file. Defaults to 'config.toml'. See Also: - config.template.toml for the full list of config options. """ # try to read the config.toml file into the config object try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError: return except toml.TomlDecodeError as e: logger.openhands_logger.warning( f'Cannot parse config from toml, toml values have not been applied.\nError: {e}', ) return # Check for the [core] section if 'core' not in toml_config: logger.openhands_logger.warning( f'No [core] section found in {toml_file}. Core settings will use defaults.' ) core_config = {} else: core_config = toml_config['core'] # Process core section if present for key, value in core_config.items(): if hasattr(cfg, key): setattr(cfg, key, value) else: logger.openhands_logger.warning( f'Unknown config key "{key}" in [core] section' ) # Process agent section if present if 'agent' in toml_config: try: agent_mapping = AgentConfig.from_toml_section(toml_config['agent']) for agent_key, agent_conf in agent_mapping.items(): cfg.set_agent_config(agent_conf, agent_key) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [agent] config from toml, values have not been applied.\nError: {e}' ) # Process llm section if present if 'llm' in toml_config: try: llm_mapping = LLMConfig.from_toml_section(toml_config['llm']) for llm_key, llm_conf in llm_mapping.items(): cfg.set_llm_config(llm_conf, llm_key) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [llm] config from toml, values have not been applied.\nError: {e}' ) # Process security section if present if 'security' in toml_config: try: security_mapping = SecurityConfig.from_toml_section(toml_config['security']) # We only use the base security config for now if 'security' in security_mapping: cfg.security = security_mapping['security'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [security] config from toml, values have not been applied.\nError: {e}' ) except ValueError: # Re-raise ValueError from SecurityConfig.from_toml_section raise ValueError('Error in [security] section in config.toml') # Process sandbox section if present if 'sandbox' in toml_config: try: sandbox_mapping = SandboxConfig.from_toml_section(toml_config['sandbox']) # We only use the base sandbox config for now if 'sandbox' in sandbox_mapping: cfg.sandbox = sandbox_mapping['sandbox'] except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [sandbox] config from toml, values have not been applied.\nError: {e}' ) except ValueError: # Re-raise ValueError from SandboxConfig.from_toml_section raise ValueError('Error in [sandbox] section in config.toml') # Process condenser section if present if 'condenser' in toml_config: try: # Pass the LLM configs to the condenser config parser condenser_mapping = condenser_config_from_toml_section( toml_config['condenser'], cfg.llms ) # Assign the default condenser configuration to the default agent configuration if 'condenser' in condenser_mapping: # Get the default agent config and assign the condenser config to it default_agent_config = cfg.get_agent_config() default_agent_config.condenser = condenser_mapping['condenser'] logger.openhands_logger.debug( 'Default condenser configuration loaded from config toml and assigned to default agent' ) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [condenser] config from toml, values have not been applied.\nError: {e}' ) # If no condenser section is in toml but enable_default_condenser is True, # set LLMSummarizingCondenserConfig as default elif cfg.enable_default_condenser: from openhands.core.config.condenser_config import LLMSummarizingCondenserConfig # Get default agent config default_agent_config = cfg.get_agent_config() # Create default LLM summarizing condenser config default_condenser = LLMSummarizingCondenserConfig( llm_config=cfg.get_llm_config(), # Use default LLM config ) # Set as default condenser default_agent_config.condenser = default_condenser logger.openhands_logger.debug( 'Default LLM summarizing condenser assigned to default agent (no condenser in config)' ) # Process extended section if present if 'extended' in toml_config: try: cfg.extended = ExtendedConfig(toml_config['extended']) except (TypeError, KeyError, ValidationError) as e: logger.openhands_logger.warning( f'Cannot parse [extended] config from toml, values have not been applied.\nError: {e}' ) # Check for unknown sections known_sections = { 'core', 'extended', 'agent', 'llm', 'security', 'sandbox', 'condenser', } for key in toml_config: if key.lower() not in known_sections: logger.openhands_logger.warning(f'Unknown section [{key}] in {toml_file}') def get_or_create_jwt_secret(file_store: FileStore) -> str: try: jwt_secret = file_store.read(JWT_SECRET) return jwt_secret except FileNotFoundError: new_secret = uuid4().hex file_store.write(JWT_SECRET, new_secret) return new_secret def finalize_config(cfg: AppConfig): """More tweaks to the config after it's been loaded.""" if cfg.workspace_base is not None: cfg.workspace_base = os.path.abspath(cfg.workspace_base) if cfg.workspace_mount_path is None: cfg.workspace_mount_path = cfg.workspace_base if cfg.workspace_mount_rewrite: base = cfg.workspace_base or os.getcwd() parts = cfg.workspace_mount_rewrite.split(':') cfg.workspace_mount_path = base.replace(parts[0], parts[1]) # make sure log_completions_folder is an absolute path for llm in cfg.llms.values(): llm.log_completions_folder = os.path.abspath(llm.log_completions_folder) if cfg.sandbox.use_host_network and platform.system() == 'Darwin': logger.openhands_logger.warning( 'Please upgrade to Docker Desktop 4.29.0 or later to use host network mode on macOS. ' 'See https://github.com/docker/roadmap/issues/238#issuecomment-2044688144 for more information.' ) # make sure cache dir exists if cfg.cache_dir: pathlib.Path(cfg.cache_dir).mkdir(parents=True, exist_ok=True) if not cfg.jwt_secret: cfg.jwt_secret = SecretStr( get_or_create_jwt_secret( get_file_store(cfg.file_store, cfg.file_store_path) ) ) def get_agent_config_arg( agent_config_arg: str, toml_file: str = 'config.toml' ) -> AgentConfig | None: """Get a group of agent settings from the config file. A group in config.toml can look like this: ``` [agent.default] enable_prompt_extensions = false ``` The user-defined group name, like "default", is the argument to this function. The function will load the AgentConfig object with the settings of this group, from the config file, and set it as the AgentConfig object for the app. Note that the group must be under "agent" group, or in other words, the group name must start with "agent.". Args: agent_config_arg: The group of agent settings to get from the config.toml file. toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: AgentConfig: The AgentConfig object with the settings from the config file. """ # keep only the name, just in case agent_config_arg = agent_config_arg.strip('[]') # truncate the prefix, just in case if agent_config_arg.startswith('agent.'): agent_config_arg = agent_config_arg[6:] logger.openhands_logger.debug(f'Loading agent config from {agent_config_arg}') # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {e}') return None except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse agent group from {agent_config_arg}. Exception: {e}' ) return None # update the agent config with the specified section if 'agent' in toml_config and agent_config_arg in toml_config['agent']: return AgentConfig(**toml_config['agent'][agent_config_arg]) logger.openhands_logger.debug(f'Loading from toml failed for {agent_config_arg}') return None def get_llm_config_arg( llm_config_arg: str, toml_file: str = 'config.toml' ) -> LLMConfig | None: """Get a group of llm settings from the config file. A group in config.toml can look like this: ``` [llm.gpt-3.5-for-eval] model = 'gpt-3.5-turbo' api_key = '...' temperature = 0.5 num_retries = 8 ... ``` The user-defined group name, like "gpt-3.5-for-eval", is the argument to this function. The function will load the LLMConfig object with the settings of this group, from the config file, and set it as the LLMConfig object for the app. Note that the group must be under "llm" group, or in other words, the group name must start with "llm.". Args: llm_config_arg: The group of llm settings to get from the config.toml file. toml_file: Path to the configuration file to read from. Defaults to 'config.toml'. Returns: LLMConfig: The LLMConfig object with the settings from the config file. """ # keep only the name, just in case llm_config_arg = llm_config_arg.strip('[]') # truncate the prefix, just in case if llm_config_arg.startswith('llm.'): llm_config_arg = llm_config_arg[4:] logger.openhands_logger.debug(f'Loading llm config from {llm_config_arg}') # load the toml file try: with open(toml_file, 'r', encoding='utf-8') as toml_contents: toml_config = toml.load(toml_contents) except FileNotFoundError as e: logger.openhands_logger.error(f'Config file not found: {e}') return None except toml.TomlDecodeError as e: logger.openhands_logger.error( f'Cannot parse llm group from {llm_config_arg}. Exception: {e}' ) return None # update the llm config with the specified section if 'llm' in toml_config and llm_config_arg in toml_config['llm']: return LLMConfig(**toml_config['llm'][llm_config_arg]) logger.openhands_logger.debug(f'Loading from toml failed for {llm_config_arg}') return None # Command line arguments def get_parser() -> argparse.ArgumentParser: """Get the argument parser.""" parser = argparse.ArgumentParser(description='Run the agent via CLI') # Add version argument parser.add_argument( '-v', '--version', action='store_true', help='Show version information' ) parser.add_argument( '--config-file', type=str, default='config.toml', help='Path to the config file (default: config.toml in the current directory)', ) parser.add_argument( '-d', '--directory', type=str, help='The working directory for the agent', ) parser.add_argument( '-t', '--task', type=str, default='', help='The task for the agent to perform', ) parser.add_argument( '-f', '--file', type=str, help='Path to a file containing the task. Overrides -t if both are provided.', ) parser.add_argument( '-c', '--agent-cls', default=OH_DEFAULT_AGENT, type=str, help='Name of the default agent to use', ) parser.add_argument( '-i', '--max-iterations', default=OH_MAX_ITERATIONS, type=int, help='The maximum number of iterations to run the agent', ) parser.add_argument( '-b', '--max-budget-per-task', type=float, help='The maximum budget allowed per task, beyond which the agent will stop.', ) # --eval configs are for evaluations only parser.add_argument( '--eval-output-dir', default='evaluation/evaluation_outputs/outputs', type=str, help='The directory to save evaluation output', ) parser.add_argument( '--eval-n-limit', default=None, type=int, help='The number of instances to evaluate', ) parser.add_argument( '--eval-num-workers', default=4, type=int, help='The number of workers to use for evaluation', ) parser.add_argument( '--eval-note', default=None, type=str, help='The note to add to the evaluation directory', ) parser.add_argument( '-l', '--llm-config', default=None, type=str, help='Replace default LLM ([llm] section in config.toml) config with the specified LLM config, e.g. "llama3" for [llm.llama3] section in config.toml', ) parser.add_argument( '--agent-config', default=None, type=str, help='Replace default Agent ([agent] section in config.toml) config with the specified Agent config, e.g. "CodeAct" for [agent.CodeAct] section in config.toml', ) parser.add_argument( '-n', '--name', help='Session name', type=str, default='', ) parser.add_argument( '--eval-ids', default=None, type=str, help='The comma-separated list (in quotes) of IDs of the instances to evaluate', ) parser.add_argument( '--no-auto-continue', help='Disable auto-continue responses in headless mode (i.e. headless will read from stdin instead of auto-continuing)', action='store_true', default=False, ) parser.add_argument( '--selected-repo', help='GitHub repository to clone (format: owner/repo)', type=str, default=None, ) return parser def parse_arguments() -> argparse.Namespace: """Parse command line arguments.""" parser = get_parser() args = parser.parse_args() if args.version: print(f'OpenHands version: {__version__}') sys.exit(0) return args def load_app_config( set_logging_levels: bool = True, config_file: str = 'config.toml' ) -> AppConfig: """Load the configuration from the specified config file and environment variables. Args: set_logging_levels: Whether to set the global variables for logging levels. config_file: Path to the config file. Defaults to 'config.toml' in the current directory. """ config = AppConfig() load_from_toml(config, config_file) load_from_env(config, os.environ) finalize_config(config) if set_logging_levels: logger.DEBUG = config.debug logger.DISABLE_COLOR_PRINTING = config.disable_color return config def setup_config_from_args(args: argparse.Namespace) -> AppConfig: """Load config from toml and override with command line arguments. Common setup used by both CLI and main.py entry points. """ # Load base config from toml and env vars config = load_app_config(config_file=args.config_file) # Override with command line arguments if provided if args.llm_config: # if we didn't already load it, get it from the toml file if args.llm_config not in config.llms: llm_config = get_llm_config_arg(args.llm_config) else: llm_config = config.llms[args.llm_config] if llm_config is None: raise ValueError(f'Invalid toml file, cannot read {args.llm_config}') config.set_llm_config(llm_config) # Override default agent if provided if args.agent_cls: config.default_agent = args.agent_cls # Set max iterations and max budget per task if provided, otherwise fall back to config values if args.max_iterations is not None: config.max_iterations = args.max_iterations if args.max_budget_per_task is not None: config.max_budget_per_task = args.max_budget_per_task # Read selected repository in config for use by CLI and main.py if args.selected_repo is not None: config.sandbox.selected_repo = args.selected_repo return config