import json import logging import multiprocessing as mp import os import pathlib import subprocess import time import traceback from concurrent.futures import Future, ProcessPoolExecutor from typing import Any, Awaitable, Callable, TextIO import pandas as pd from pydantic import BaseModel from tqdm import tqdm from openhands.controller.state.state import State from openhands.core.config import LLMConfig from openhands.core.logger import get_console_handler from openhands.core.logger import openhands_logger as logger from openhands.events.action import Action from openhands.events.action.message import MessageAction class EvalMetadata(BaseModel): agent_class: str llm_config: LLMConfig max_iterations: int eval_output_dir: str start_time: str git_commit: str dataset: str | None = None data_split: str | None = None details: dict[str, Any] | None = None def model_dump(self, *args, **kwargs): dumped_dict = super().model_dump(*args, **kwargs) # avoid leaking sensitive information dumped_dict['llm_config'] = self.llm_config.to_safe_dict() return dumped_dict def model_dump_json(self, *args, **kwargs): dumped = super().model_dump_json(*args, **kwargs) dumped_dict = json.loads(dumped) logger.debug(f'Dumped metadata: {dumped_dict}') # avoid leaking sensitive information dumped_dict['llm_config'] = self.llm_config.to_safe_dict() return json.dumps(dumped_dict) class EvalOutput(BaseModel): # NOTE: User-specified instance_id: str instruction: str # output of the evaluation # store anything that is needed for the score calculation test_result: dict[str, Any] # Interaction info metadata: EvalMetadata history: list[tuple[dict[str, Any], dict[str, Any]]] metrics: dict[str, Any] error: str | None = None # Optionally save the input test instance instance: dict[str, Any] | None = None def model_dump(self, *args, **kwargs): dumped_dict = super().model_dump(*args, **kwargs) # Apply custom serialization for metadata (to avoid leaking sensitive information) dumped_dict['metadata'] = self.metadata.model_dump() return dumped_dict def model_dump_json(self, *args, **kwargs): dumped = super().model_dump_json(*args, **kwargs) dumped_dict = json.loads(dumped) # Apply custom serialization for metadata (to avoid leaking sensitive information) dumped_dict['metadata'] = json.loads(self.metadata.model_dump_json()) return json.dumps(dumped_dict) class EvalError(BaseModel): instance_id: str error: str stacktrace: str def codeact_user_response( state: State, encapsulate_solution: bool = False, try_parse: Callable[[Action], str] | None = None, ) -> str: encaps_str = ( ( 'Please encapsulate your final answer (answer ONLY) within and .\n' 'For example: The answer to the question is 42 .\n' ) if encapsulate_solution else '' ) msg = ( 'Please continue working on the task on whatever approach you think is suitable.\n' 'If you think you have solved the task, please first send your answer to user through message and then exit .\n' f'{encaps_str}' 'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n' ) if state.history: # check if the last action has an answer, if so, early exit if try_parse is not None: last_action = state.history.get_last_action() ans = try_parse(last_action) if ans is not None: return '/exit' # check if the agent has tried to talk to the user 3 times, if so, let the agent know it can give up user_msgs = [ event for event in state.history.get_events() if isinstance(event, MessageAction) and event.source == 'user' ] if len(user_msgs) >= 2: # let the agent know that it can give up when it has tried 3 times return ( msg + 'If you want to give up, run: exit .\n' ) return msg def cleanup(): print('Cleaning up child processes...') for process in mp.active_children(): print(f'Terminating child process: {process.name}') process.terminate() process.join() def make_metadata( llm_config: LLMConfig, dataset_name: str, agent_class: str, max_iterations: int, eval_note: str | None, eval_output_dir: str, data_split: str | None = None, details: dict[str, Any] | None = None, ) -> EvalMetadata: model_name = llm_config.model.split('/')[-1] model_path = model_name.replace(':', '_') eval_note = f'_N_{eval_note}' if eval_note else '' eval_output_path = os.path.join( eval_output_dir, dataset_name, agent_class, f'{model_path}_maxiter_{max_iterations}{eval_note}', ) pathlib.Path(eval_output_path).mkdir(parents=True, exist_ok=True) pathlib.Path(os.path.join(eval_output_path, 'logs')).mkdir( parents=True, exist_ok=True ) logger.info(f'Using evaluation output directory: {eval_output_path}') metadata = EvalMetadata( agent_class=agent_class, llm_config=llm_config, max_iterations=max_iterations, eval_output_dir=eval_output_path, start_time=time.strftime('%Y-%m-%d %H:%M:%S'), git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD']) .decode('utf-8') .strip(), dataset=dataset_name, data_split=data_split, details=details, ) metadata_json = metadata.model_dump_json() logger.info(f'Metadata: {metadata_json}') with open(os.path.join(eval_output_path, 'metadata.json'), 'w') as f: f.write(metadata_json) return metadata def prepare_dataset( dataset: pd.DataFrame, output_file: str, eval_n_limit: int, eval_ids: list[str] | None = None, skip_num: int | None = None, ): assert ( 'instance_id' in dataset.columns ), "Expected 'instance_id' column in the dataset. You should define your own unique identifier for each instance and use it as the 'instance_id' column." id_column = 'instance_id' logger.info(f'Writing evaluation output to {output_file}') finished_ids: set[str] = set() if os.path.exists(output_file): with open(output_file, 'r') as f: for line in f: data = json.loads(line) finished_ids.add(str(data[id_column])) logger.warning( f'\nOutput file {output_file} already exists. Loaded {len(finished_ids)} finished instances.' ) if eval_ids: eval_ids_converted = [dataset[id_column].dtype.type(id) for id in eval_ids] dataset = dataset[dataset[id_column].isin(eval_ids_converted)] logger.info(f'Limiting evaluation to {len(eval_ids)} specific instances.') elif skip_num and skip_num >= 0: skip_num = min(skip_num, len(dataset)) dataset = dataset.iloc[skip_num:] logger.info( f'Starting evaluation with skipping first {skip_num} instances ({len(dataset)} instances to run).' ) if eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to {eval_n_limit} instances.') elif eval_n_limit and eval_n_limit > 0: dataset = dataset.head(eval_n_limit) logger.info(f'Limiting evaluation to first {eval_n_limit} instances.') new_dataset = [ instance for _, instance in dataset.iterrows() if str(instance[id_column]) not in finished_ids ] logger.info( f'Finished instances: {len(finished_ids)}, Remaining instances: {len(new_dataset)}' ) return pd.DataFrame(new_dataset) def update_progress( result_or_future: Future | EvalOutput | EvalError, instance: pd.Series, pbar: tqdm, output_fp: TextIO, instance_queue: mp.Queue, ): """Update the progress bar and write the result to the output file.""" try: if isinstance(result_or_future, Future): result = result_or_future.result() else: result = result_or_future except Exception as e: # Handle the error # Exception may be raised in the process_instance_func and will # be raised here when we try to access the .result() of the future handle_error( EvalError( instance_id=instance.instance_id, error=str(e), stacktrace=traceback.format_exc(), ), instance, pbar, instance_queue, ) return # Update the progress bar and write the result to the output file if isinstance(result, EvalOutput): pbar.update(1) pbar.set_description(f'Instance {result.instance_id}') pbar.set_postfix_str(f'Test Result: {result.test_result}') logger.info( f'Finished evaluation for instance {result.instance_id}: {str(result.test_result)[:300]}...\n' ) output_fp.write(json.dumps(result.model_dump()) + '\n') output_fp.flush() elif isinstance(result, EvalError): handle_error(result, instance, pbar, instance_queue) else: raise ValueError(f'Unexpected result type: {type(result)}') def handle_error( error: EvalError, instance: pd.Series, pbar: tqdm, instance_queue: mp.Queue ): """Handle an error that occurred during evaluation.""" logger.error( f'Retrying instance [{instance.instance_id}] due to error: {error.error}. Stacktrace:\n{error.stacktrace}' + '\n' + '-' * 10 + '[You may ignore this error if it is a transient issue - the instance will be automatically retried.]' + '-' * 10 + '\n' ) instance_queue.put(instance) pbar.total += 1 pbar.refresh() def run_evaluation( dataset: pd.DataFrame, metadata: EvalMetadata, output_file: str, num_workers: int, process_instance_func: Callable[ [pd.Series, EvalMetadata, bool], Awaitable[EvalOutput] ], ): use_multiprocessing = num_workers > 1 logger.info( f'Evaluation started with Agent {metadata.agent_class}:\n' f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.\n' ) instance_queue = mp.Queue() for _, instance in dataset.iterrows(): instance_queue.put(instance) total_instances = len(dataset) pbar = tqdm(total=total_instances, desc='Instances processed') output_fp = open(output_file, 'a') try: if use_multiprocessing: with ProcessPoolExecutor(num_workers) as executor: batch_futures = [] # Loop until there are *no more instances to be processed* and *all (in-progress) futures are done* # since a running future may add new instances to the queue when error occurs while not instance_queue.empty() or batch_futures: # Submit new tasks if there are instances to be processed and available workers while ( not instance_queue.empty() and len(batch_futures) < num_workers ): try: instance = instance_queue.get(block=False) future = executor.submit( process_instance_func, instance, metadata, True ) future.instance = ( instance # Attach the instance to the future ) batch_futures.append(future) except mp.queues.Empty: logger.warning( 'Queue is empty - This should not happen. This is a bug.' ) break # Queue is empty, stop submitting new tasks # Continue to wait for the futures to be done & remove completed futures new_batch_futures = [] for future in batch_futures: if future.done(): update_progress( future, future.instance, pbar, output_fp, instance_queue ) else: new_batch_futures.append(future) batch_futures = new_batch_futures # Short sleep to prevent busy-waiting time.sleep(1) assert instance_queue.empty(), 'instance_queue should be empty after all futures are done. This is a bug.' assert ( len(batch_futures) == 0 ), 'batch_futures should be empty after all futures are done. This is a bug.' else: while not instance_queue.empty(): instance = instance_queue.get() result = process_instance_func(instance, metadata, False) update_progress(result, instance, pbar, output_fp, instance_queue) except KeyboardInterrupt: print('\nKeyboardInterrupt received. Cleaning up...\n') cleanup() output_fp.close() logger.info('\nEvaluation finished.\n') def reset_logger_for_multiprocessing( logger: logging.Logger, instance_id: str, log_dir: str ): """Reset the logger for multiprocessing. Save logs to a separate file for each process, instead of trying to write to the same file/console from multiple processes. """ # Set up logger log_file = os.path.join( log_dir, f'instance_{instance_id}.log', ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) # add back the console handler to print ONE line logger.addHandler(get_console_handler()) logger.info( f'Starting evaluation for instance {instance_id}.\n' f'Hint: run "tail -f {log_file}" to see live logs in a separate shell' ) # Remove all existing handlers from logger for handler in logger.handlers[:]: logger.removeHandler(handler) os.makedirs(os.path.dirname(log_file), exist_ok=True) file_handler = logging.FileHandler(log_file) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) logger.addHandler(file_handler)